OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 29111–29120

Solution-based adaptive parallel patterning by laser-induced local plasmonic surface defunctionalization

Bongchul Kang, Jongsu Kim, and Minyang Yang  »View Author Affiliations

Optics Express, Vol. 20, Issue 27, pp. 29111-29120 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1274 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Adaptive mass fabrication method based on laser-induced plasmonic local surface defunctionalization was suggested to realize solution-based high resolution self-patterning on transparent substrate in parallel. After non-patterned functional monolayer was locally deactivated by laser-induced metallic plasma species, various micro/nano metal structures could be simultaneously fabricated by the parallel self-selective deposition of metal nanoparticles on a specific region. This method makes the eco-friendly and cost-effective production of high resolution pattern possible. Moreover, it can respond to design change actively due to the broad controllable range and easy change of key patterning specifications such as a resolution (subwavelength~100 μm), thickness (100 nm~6 μm), type (dot and line), and shape.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(310.1860) Thin films : Deposition and fabrication
(350.5400) Other areas of optics : Plasmas
(160.4236) Materials : Nanomaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Laser Microfabrication

Original Manuscript: August 30, 2012
Revised Manuscript: October 5, 2012
Manuscript Accepted: October 16, 2012
Published: December 14, 2012

Bongchul Kang, Jongsu Kim, and Minyang Yang, "Solution-based adaptive parallel patterning by laser-induced local plasmonic surface defunctionalization," Opt. Express 20, 29111-29120 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, and A. J. Lovinger, “High-performance plastic transistors fabricated by printing techniques,” Chem. Mater.9(6), 1299–1301 (1997). [CrossRef]
  2. C. W. Sele, T. von Werne, R. H. Friend, and H. Sirringhaus, “Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution,” Adv. Mater. (Deerfield Beach Fla.)17(8), 997–1001 (2005). [CrossRef]
  3. B. Kang, S. Ko, J. Kim, and M. Yang, “Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink,” Opt. Express19(3), 2573–2579 (2011). [CrossRef] [PubMed]
  4. D. Pile, “Organic electronics: laser-induced electrode fabrication,” Nat. Photonics5(4), 199 (2011). [CrossRef]
  5. B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle,” J. Phys. Chem. C115(48), 23664–23670 (2011). [CrossRef]
  6. B. Kang, J. Kno, and M. Yang, “High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate,” J. Micromech. Microeng.21(7), 075017 (2011). [CrossRef]
  7. A. Bonito, M. Picasso, and M. Laso, “Numerical simulation of 3D viscoelastic flows with free surfaces,” J. Comput. Phys.215(2), 691–716 (2006). [CrossRef]
  8. F. C. Krebs, “Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide,” Sol. Energy Mater. Sol. Cells93(9), 1636–1641 (2009). [CrossRef]
  9. T. C. M. Sotomayor, Alternative Lithography. (Springer: NewYork, 2003).
  10. S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett.7(7), 1869–1877 (2007). [CrossRef] [PubMed]
  11. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005). [CrossRef] [PubMed]
  12. R. K. Smith, P. A. Lewis, and P. S. Weiss, “Patterning self-assembled monolayers,” Prog. Surf. Sci.75(1-2), 1–68 (2004). [CrossRef]
  13. M. H. Lin, C. F. Chen, H. W. Shiu, C. H. Chen, and S. Gwo, “Multilength-scale chemical patterning of self-assembled monolayers by spatially controlled plasma exposure: nanometer to centimeter range,” J. Am. Chem. Soc.131(31), 10984–10991 (2009). [CrossRef] [PubMed]
  14. W. Chang, M. Choi, J. Kim, S. Cho, and K. Whang, “Sub-micron scale patterning using femtosecond laser and self-assembled monolayers interaction,” Appl. Surf. Sci.240(1-4), 296–304 (2005). [CrossRef]
  15. Y. Zhang, R. H. Terrill, T. A. Tanzer, and P. W. Bohn, “Ozonolysis is the primary cause of UV photooxidation of alkanethiolate monolayers at Low Irradiance,” J. Am. Chem. Soc.120(11), 2654–2655 (1998). [CrossRef]
  16. D. J. Kim, J. M. Lee, J. G. Park, and B. G. Chung, “A self-assembled monolayer-based micropatterned array for controlling cell adhesion and protein adsorption,” Biotechnol. Bioeng.108(5), 1194–1202 (2011). [CrossRef] [PubMed]
  17. Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, “Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction,” J. Micromech. Microeng.16(11), 2259–2264 (2006). [CrossRef]
  18. K. Neil, Adam, The Physics and Chemistry of Surfaces, 3rd ed. (Oxford University Press, 1941).
  19. W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, G. Min, Y. Wan, L. Shi, and S. Feng, “Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography,” Appl. Surf. Sci.255(5), 2885–2889 (2008). [CrossRef]
  20. R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom.19(4), 419–428 (2004). [CrossRef]
  21. H. R. Pakhal, R. P. Lucht, and N. M. Laurendeau, “Spectral measurements of incipient plasma temperature and electron number density during laser ablation of aluminum in air,” Appl. Phys. B90(1), 15–27 (2008). [CrossRef]
  22. S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(2), 026413 (2004). [CrossRef] [PubMed]
  23. B. Wu, Y. C. Shin, H. Pakhal, N. M. Laurendeau, and R. P. Lucht, “Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(2 Pt 2), 026405 (2007). [CrossRef] [PubMed]
  24. B. Wu, “High-intensity nanosecond-pulsed laser-induced plasma in air, water, and vacuum: A comparative study of the early-stage evolution using a physics-based predictive model,” Appl. Phys. Lett.93(10), 101104 (2008). [CrossRef]
  25. X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express18(25), 26007–26017 (2010). [CrossRef] [PubMed]
  26. S. H. Ko, Y. Choi, D. J. Hwang, C. P. Grigoropoulos, J. Chung, and D. Poulikakos, “Nanosecond laser ablation of gold nanoparticle films,” Appl. Phys. Lett.89(14), 141126 (2006). [CrossRef]
  27. J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Appl. Phys. Lett.84(5), 801–803 (2004). [CrossRef]
  28. H. W. Fox and W. A. Zisman, “The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene,” J. Colloid Sci.5(6), 514–531 (1950). [CrossRef]
  29. B. Medasani, Y. H. Park, and I. Vasiliev, “Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles,” Phys. Rev. B75(23), 235436 (2007). [CrossRef]
  30. H. Y. Ko, J. Park, H. Shin, and J. Moon, “Rapid self-assembly of monodisperse colloidal spheres in an ink-jet printed droplet,” Chem. Mater.16(22), 4212–4215 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited