OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 27 — Dec. 17, 2012
  • pp: 29131–29136

Pyroelectric effect in green light-assisted domain reversal of Mg-doped LiNbO3 crystals

Shoujun Zheng, Yongfa Kong, Hongde Liu, Shaolin Chen, Ling Zhang, Shiguo Liu, and Jingjun Xu  »View Author Affiliations


Optics Express, Vol. 20, Issue 27, pp. 29131-29136 (2012)
http://dx.doi.org/10.1364/OE.20.029131


View Full Text Article

Enhanced HTML    Acrobat PDF (955 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a real-time imaging system to probe the light-assisted domain reversal process of Mg-doped LiNbO3. An interesting phenomenon was observed where the domain appeared to reverse just after the laser was obscured. An exclusive electric field of about 350 V/mm was measured at 532 nm of light irradiation at an intensity of 6.6 × 104 W/cm2. The exclusive electric field was considered to be produced by a pyroelectric effect owing to a temperature change in the region of irradiation. The temperature change in the light-irradiated region was calculated to be about 2.3°C. Our experimental results indicate that a change of the electric field caused by the pyroelectric effect may play a significant role when LiNbO3 or other ferroelectric crystals are used under strong light.

© 2012 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(160.3730) Materials : Lithium niobate

ToC Category:
Materials

History
Original Manuscript: October 26, 2012
Revised Manuscript: December 1, 2012
Manuscript Accepted: December 2, 2012
Published: December 14, 2012

Citation
Shoujun Zheng, Yongfa Kong, Hongde Liu, Shaolin Chen, Ling Zhang, Shiguo Liu, and Jingjun Xu, "Pyroelectric effect in green light-assisted domain reversal of Mg-doped LiNbO3 crystals," Opt. Express 20, 29131-29136 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-27-29131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73(2), 136–138 (1998). [CrossRef]
  2. V. Bermúdez, J. Capmany, J. García Solé, and E. Diéguez, “Growth and second harmonic generation characterization of Er-doped bulk periodically poled LiNbO3,” Appl. Phys. Lett. 73(5), 593–595 (1998). [CrossRef]
  3. J. A. Abernethy, C. B. E. Gawith, R. W. Eason, and P. G. R. Smith, “Demonstration and optical characteristics of electro-optic Bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett. 81(14), 2514–2516 (2002). [CrossRef]
  4. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, P. De Natale, and M. Chiarini, “Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography,” Opt. Express 11(4), 392–405 (2003). [CrossRef] [PubMed]
  5. C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86(2), 022906 (2005). [CrossRef]
  6. C. L. Sones, A. C. Muir, Y. J. Ying, S. Mailis, R. W. Eason, T. Jungk, Á. Hoffmann, and E. Soergel, “Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling,” Appl. Phys. Lett. 92(7), 072905 (2008). [CrossRef]
  7. W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009). [CrossRef]
  8. H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett. 97(20), 201901 (2010). [CrossRef]
  9. A. C. Muir, C. L. Sones, S. Mailis, R. W. Eason, T. Jungk, A. Hoffman, and E. Soergel, “Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser,” Opt. Express 16(4), 2336–2350 (2008). [CrossRef] [PubMed]
  10. H. Steigerwald, M. Lilienblum, F. von Cube, Y. J. Ying, R. W. Eason, S. Mailis, B. Sturman, E. Soergel, and K. Buse, “Origin of UV-induced poling inhibition in lithium niobate crystals,” Phys. Rev. B 82(21), 214105 (2010). [CrossRef]
  11. H. Steigerwald, Y. J. Ying, R. W. Eason, K. Buse, S. Mailis, and E. Soergel, “Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser,” Appl. Phys. Lett. 98(6), 062902 (2011). [CrossRef]
  12. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005). [CrossRef]
  13. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001). [CrossRef]
  14. F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3: Fe,” Appl. Phys. B 59(4), 437–443 (1994). [CrossRef]
  15. K. Kitamura, H. Hatano, S. Takekawa, D. Schütze, and M. Aono, “Large pyroelectric effect in Fe-doped lithium niobate induced by a high-power short-pulse laser,” Appl. Phys. Lett. 97(8), 082903 (2010). [CrossRef]
  16. H. Steigerwald, F. Cube, F. Luedtke, V. Dierolf, and K. Buse, “Influence of heat and UV light on the coercive field of lithium niobate crystals,” Appl. Phys. B 101(3), 535–539 (2010). [CrossRef]
  17. P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano-pico droplets and liquid patterning by pyroelectrodynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1755 KB)     
» Media 2: MOV (1818 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited