OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29217–29222

Light-shift suppression in a miniaturized Mx optically pumped Cs magnetometer array with enhanced resonance signal using off-resonant laser pumping

Theo Scholtes, Volkmar Schultze, Rob IJsselsteijn, Stefan Woetzel, and Hans-Georg Meyer  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29217-29222 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1829 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of an optically pumped Mx magnetometer with miniaturized Cs cell at earth’s magnetic field strength (50μT) is investigated. Operation using detuned high intensity laser light is shown to be superior to the conventional resonant operation in terms of the projected shot-noise-limited ( 50 f T H z) and the actual noise-limited sensitivity using a noise compensation method. The Zeeman light shift effect, emerging due to the off-resonant circularly polarized laser radiation and leading to a strong orientational dependence of the measurement, is suppressed by averaging two identical magnetometer configurations pumped with oppositely circularly polarized light. A residual heading error within the range of 14nT, limited by the present experimental characterization setup, was achieved.

© 2012 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.6580) Atomic and molecular physics : Stark effect
(020.7490) Atomic and molecular physics : Zeeman effect
(230.0230) Optical devices : Optical devices

ToC Category:
Atomic and Molecular Physics

Original Manuscript: October 10, 2012
Revised Manuscript: November 15, 2012
Manuscript Accepted: November 29, 2012
Published: December 17, 2012

Theo Scholtes, Volkmar Schultze, Rob IJsselsteijn, Stefan Woetzel, and Hans-Georg Meyer, "Light-shift suppression in a miniaturized Mx optically pumped Cs magnetometer array with enhanced resonance signal using off-resonant laser pumping," Opt. Express 20, 29217-29222 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. E. Bell and A. L. Bloom, “Optical detection of magnetic resonance in alkali metal vapor,” Phys. Rev. 107, 1559–1565 (1957). [CrossRef]
  2. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227 – 234 (2007). [CrossRef]
  3. H. B. Dang, A. C. Maloof, and M.V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010). [CrossRef]
  4. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972). [CrossRef]
  5. A. L. Bloom, “Principles of operation of the rubidium vapor magnetometer,” Appl. Opt. 1, 61–68 (1962). [CrossRef]
  6. S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D 38, 239–247 (2006). [CrossRef]
  7. B. S. Mathur, H. Tang, and W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11–19 (1968). [CrossRef]
  8. E. B. Aleksandrov and A. K. Vershovskii, “Modern radio-optical methods in quantum magnetometry,” Phys. Usp. 52, 573–601 (2009). [CrossRef]
  9. T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A 84, 043416 (2011). [CrossRef]
  10. T. Yabuzaki and T. Ogawa, “Frequency shifts of self-oscillating magnetometer with cesium vapor,” J. Appl. Phys. 45, 1342–1355 (1974). [CrossRef]
  11. S. Woetzel, V. Schultze, R. IJsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum. 82, 033111 (2011). [CrossRef] [PubMed]
  12. R. IJsselsteijn, M. Kielpinski, S. Woetzel, T. Scholtes, E. Kessler, R. Stolz, V. Schultze, and H.-G. Meyer, “A full optically operated magnetometer array: an experimental study,” Rev. Sci. Instrum. 83, 113106 (2012). [CrossRef] [PubMed]
  13. V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, and H.-G. Meyer, “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer,” Opt. Express 20, 14201–14212 (2012). [CrossRef] [PubMed]
  14. V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100, 717–724 (2010). [CrossRef]
  15. V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357 (2008). [CrossRef]
  16. S. Appelt, A. B. Baranga, A. R. Young, and W. Happer, “Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells,” Phys. Rev. A 59, 2078–2084 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited