OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29223–29236

Adiabatic microring modulators

Aleksandr Biberman, Erman Timurdogan, William A. Zortman, Douglas C. Trotter, and Michael R. Watts  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29223-29236 (2012)
http://dx.doi.org/10.1364/OE.20.029223


View Full Text Article

Enhanced HTML    Acrobat PDF (2253 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we demonstrate and experimentally characterize a new class of high-performance silicon photonic modulators—the adiabatic microring modulator. The adiabatic microring modulator utilizes a vertical PN junction and interior electrical contacts, leveraging all the advantages of previously-demonstrated microdisk modulators. However, this device also incorporates an adiabatic transition from the wide, multimode contact region, to a narrow, single-mode coupling region, eliminating unwanted spatial modes common to microdisks. As a result, the adiabatic microring modulator demonstrated in this work is the smallest microring modulator demonstrated to date, with a diameter of only 4 μm, yielding a 6.92-THz uncorrupted free spectral range. Here, we perform an experimental comparative analysis between silicon adiabatic microring modulators, silicon microdisk modulators, and a commercial lithium-niobate Mach-Zehnder modulator. We show that the silicon adiabatic microring modulator using partial doping is capable of operating at 12.5-Gb/s data rates and beyond. This device combines the best of all modulator designs, leveraging the depletion-based method to maximize the speed, utilizing the vertical-junction configuration to minimize the power consumption, employing a unique adiabatic design to eliminate higher-order modes, and using partial doping to reduce resistance, further enhancing the speed of the device.

© 2012 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(230.3120) Optical devices : Integrated optics devices
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.4110) Optoelectronics : Modulators

ToC Category:
Optoelectronics

History
Original Manuscript: October 11, 2012
Revised Manuscript: December 4, 2012
Manuscript Accepted: December 10, 2012
Published: December 17, 2012

Citation
Aleksandr Biberman, Erman Timurdogan, William A. Zortman, Douglas C. Trotter, and Michael R. Watts, "Adiabatic microring modulators," Opt. Express 20, 29223-29236 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29223


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009). [CrossRef]
  2. A. Biberman, “Silicon photonic revolution through advanced integration,” Future Fab Intl. 42, 25–28 (2012).
  3. A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012). [CrossRef] [PubMed]
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  6. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” Proc. International Conference on Group IV Photonics (GFP), WA2 (2008).
  7. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19(22), 21989–22003 (2011). [CrossRef] [PubMed]
  8. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011). [CrossRef] [PubMed]
  9. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19(27), 26017–26026 (2011). [CrossRef] [PubMed]
  10. M. R. Watts, “Adiabatic microring resonators,” Opt. Lett. 35(19), 3231–3233 (2010). [CrossRef] [PubMed]
  11. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” Proc. Conference on Lasers and Electro-Optics (CLEO), CPDB10 (2009).
  12. E. Timurdogan, M. Moresco, A. Biberman, J. Sun, W. A. Zortman, D. C. Trotter, and M. R. Watts, “Adiabatic resonant microring (ARM) modulator,” Proc. Optical Interconnects Conference (OI Conference), TuC6 (2012).
  13. A. Biberman, S. Manipatruni, N. Ophir, L. Chen, M. Lipson, and K. Bergman, “First demonstration of long-haul transmission using silicon microring modulators,” Opt. Express 18(15), 15544–15552 (2010). [CrossRef] [PubMed]
  14. W. A. Zortman, A. L. Lentine, M. R. Watts, and D. C. Trotter, “Power penalty measurement and frequency chirp extraction in silicon microdisk resonator modulators,” Proc. Optical Fiber Communication Conference (OFC), OMI7 (2010).
  15. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009). [CrossRef] [PubMed]
  16. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett. 35(19), 3246–3248 (2010). [CrossRef] [PubMed]
  17. X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions,” Opt. Express 20(3), 2507–2515 (2012). [CrossRef] [PubMed]
  18. J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express 20(24), 26411–26423 (2012). [CrossRef] [PubMed]
  19. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011). [CrossRef] [PubMed]
  20. G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” Proc. International Conference on Group IV Photonics (GFP), 1–3 (2012).
  21. Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express 20(14), 15079–15085 (2012). [CrossRef] [PubMed]
  22. X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, J. Yu, and Y. Yu, “44-Gb/s silicon microring modulators based on zigzag PN junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012). [CrossRef]
  23. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37(20), 4236–4238 (2012). [CrossRef] [PubMed]
  24. M. R. Watts, D. C. Trotter, and R. W. Young, “Maximally confined high-speed second-order silicon microdisk switches,” Proc. Optical Fiber Communication Conference (OFC), PDP14 (2008).
  25. A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, and K. Bergman, “Broadband silicon photonic electrooptic switch for photonic interconnection networks,” IEEE Photon. Technol. Lett. 23(8), 504–506 (2011). [CrossRef]
  26. M. A. Popovíc, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Multistage high-order microring-resonator add-drop filters,” Opt. Lett. 31(17), 2571–2573 (2006). [CrossRef] [PubMed]
  27. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012). [CrossRef] [PubMed]
  28. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007). [CrossRef] [PubMed]
  29. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011). [CrossRef] [PubMed]
  30. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005). [CrossRef] [PubMed]
  31. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30(9), 967–969 (2005). [CrossRef] [PubMed]
  32. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007). [CrossRef]
  33. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011). [CrossRef] [PubMed]
  34. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett. 37(5), 875–877 (2012). [CrossRef] [PubMed]
  35. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008). [CrossRef] [PubMed]
  36. X. Zheng, F. Y. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. D. Thacker, I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow power 80 Gb/s arrayed CMOS silicon photonic transceivers for WDM optical links,” J. Lightwave Technol. 30(4), 641–650 (2012). [CrossRef]
  37. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited