OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29252–29259

Experimental optimization of the optical and electrical properties of a half-wavelength-thick organic hetero-structure in a Micro-cavity

A. Coens, M. Chakaroun, A. P. A. Fischer, M. W. Lee, A. Boudrioua, B. Geffroy, and G. Vemuri  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29252-29259 (2012)
http://dx.doi.org/10.1364/OE.20.029252


View Full Text Article

Enhanced HTML    Acrobat PDF (1798 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the context of progress towards the organic laser diode, we experimentally investigate the optical and electrical optimization of an OLED in a vertical λ/2 microcavity. The microcavity consists of a quarter-wavelength TiO2/SiO2 multilayer mirror, a half-wavelength-thick OLED and a semitransparent aluminum cathode. The Alq3/DCM2 guest-host system is used as the emitting layer. This study focuses on the design and the fabrication of a half-wavelength thick organic hetero-structure exhibiting a high current density despite both the thickness increase and the cathode thickness reduction. The emission wavelength, the line-width narrowing and the current-density are studied as a function of two key parameters: the hetero-structure optical thickness and the aluminum cathode thickness. The experimental results show that a 125 nm thick cavity OLED ended by a 20 nm thick aluminum cathode exhibits a resonance at 606 nm with a full width at half maximum of 11 nm, and with current-densities exceeding 0.5 A/cm2. We show that even without a top high-quality-mirror the incomplete microcavity λ/2 OLED hetero-structure exhibits a clear modification of the spontaneous emission at normal incidence.

© 2012 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(250.3680) Optoelectronics : Light-emitting polymers
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Optoelectronics

History
Original Manuscript: October 18, 2012
Revised Manuscript: November 16, 2012
Manuscript Accepted: November 28, 2012
Published: December 17, 2012

Citation
A. Coens, M. Chakaroun, A. P. A. Fischer, M. W. Lee, A. Boudrioua, B. Geffroy, and G. Vemuri, "Experimental optimization of the optical and electrical properties of a half-wavelength-thick organic hetero-structure in a Micro-cavity," Opt. Express 20, 29252-29259 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29252


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature382(6593), 695–697 (1996). [CrossRef]
  2. T. Granlund, M. Theander, M. Berggren, M. Anderson, A. Ruzeckas, V. Sundstrom, G. Bjork, M. Grastrom, and O. Ingenas, “A polythiophene microcavity laser,” Chem. Phys. Lett.288(5-6), 879–884 (1998).
  3. M. A. Baldo, D. F. O'Brien, M. E. Thompson, and S. R. Forrest, “Prospects for electrically pumped organic lasers,” Phys. Rev.66, 1–16 (2002).
  4. E. J. W. List, C.-H. Kim, A. K. Naik, U. Scherf, G. Leising, W. Graupner, and J. Shinar, “Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study,” Phys. Rev.64, 1–11 (2001).
  5. M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett.87(22), 221113–16 (2005). [CrossRef]
  6. Y.-L. Liao, W.-Y. Hung, T.-H. Hou, C.-Y. Lin, and K.-T. Wong, “Hole mobilities of 2,7- and 2,2′-disubstituted 9,9′-spirobifluorene-based triaryldiamines and their application as hole transport materials in OLEDs,” Chem. Mater.19(25), 6350–6357 (2007). [CrossRef]
  7. H. Nakanotani, T. Oyamada, Y. Kawamura, H. Sasabe, and C. Adachi, “Injection and Transport of High Current Density over 1000 A/cm2 in Organic Light Emitting Diodes under Pulse Excitation,” J. Appl. Phys.44(6A), 3659–3662 (2005). [CrossRef]
  8. S. V. Frolov, M. Liess, P. A. Lane, W. Gellermann, Z. V. Vardeny, M. Ozaki, and K. Yoshino, “Exciton dynamics in soluble poly(p-phenylene-vinylene): Towards an ultrafast excitonic switch,” Phys. Rev. Lett.78(22), 4285–4288 (1997). [CrossRef]
  9. N. Tessler, N. T. Harrison, and R. H. Friend, “High peak brightness polymer light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)10(1), 64–68 (1998). [CrossRef]
  10. V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature389(6649), 362–364 (1997). [CrossRef]
  11. V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations,” IEEE J. Quantum Electron.36(1), 18–26 (2000). [CrossRef]
  12. X. Liu, H. Li, C. Song, Y. Liao, and M. Tian, “Microcavity organic laser device under electrical pumping,” Opt. Lett.34(4), 503–505 (2009). [CrossRef] [PubMed]
  13. I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull, “How to recognize lasing,” Nat. Photonics3(10), 546–549 (2009). [CrossRef]
  14. D. Kasemann, R. Brueckner, H. Frob, and K. Leo, “Organic light-emitting diodes under high currents explored by transient electroluminescence on the nanosecond scale,” Phys. Rev. B84(11), 115208 (2011). [CrossRef]
  15. J. Lee, S. Hofmann, M. Furno, Y. H. Kim, J.-I. Lee, H. Y. Chu, B. Lüssem, and K. Leo, “Combined effects of microcavity and dielectric capping layer on bidirectional organic light-emitting diodes,” Opt. Lett.37(11), 2007–2009 (2012). [CrossRef] [PubMed]
  16. M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, and K. Leo, “Dynamics of a high-Q vertical-cavity organic laser,” Appl. Phys. Lett.87(18), 181108 (2005). [CrossRef]
  17. W. Brütting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron.2(1), 1–36 (2001). [CrossRef]
  18. M. Chakaroun, A. Coens, N. Fabre, F. Gourdon, J. Solard, A. Fischer, A. Boudrioua, and C. C. Lee, “Optimal design of a microcavity organic laser device under electrical pumping,” Opt. Express19(2), 493–505 (2011). [CrossRef] [PubMed]
  19. S. Y. Park, C. H. Lee, W. J. Song, and C. Seoul, “Enhanced electron injection in organic light-emitting devices using Al/LiF electrodes,” Curr. Appl. Phys.1(1), 116–120 (2001). [CrossRef]
  20. S.-H. Wu, W.- Li, B. Chu, C. S. Lee, Z.- Su, J.- Wang, Q.- Ren, Z.- Hu, and Z.- Zhang, “Visible-blind ultraviolet sensitive photodiode with high responsivity and long term stability,” Appl. Phys. Lett.97(2), 023306 (2010). [CrossRef]
  21. L. L. Chen, W. L. Li, H. Z. Wei, B. Chu, and B. Li, “Organic ultraviolet photovoltaic diodes based on copper phthalocyanine as an electron acceptor,” Sol. Energy Mater. Sol. Cells90(12), 1788–1796 (2006). [CrossRef]
  22. F. Ma and X. Liu, “Phase shift and penetration depth of metal mirrors in a microcavity structure,” Appl. Opt.46(25), 6247 (2007). [CrossRef] [PubMed]
  23. K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A15(4), 962–971 (1998). [CrossRef]
  24. M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B85(11), 115205 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited