OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29260–29265

Achromatic axially symmetric wave plate

Toshitaka Wakayama, Kazuki Komaki, Yukitoshi Otani, and Toru Yoshizawa  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29260-29265 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1675 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An achromatic axially symmetric wave plate (AAS-WP) is proposed that is based on Fresnel reflections. The wave plate does not introduce spatial dispersion. It provides retardation in the wavelength domain with an axially symmetric azimuthal angle. The optical configuration, a numerical simulation, and the optical properties of the AAS-WP are described. It is composed of PMMA. A pair of them is manufactured on a lathe. In the numerical simulation, the achromatic angle is estimated and is used to design the devices. They generate an axially symmetric polarized beam. The birefringence distribution is measured in order to evaluate the AAS-WPs.

© 2012 OSA

OCIS Codes
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Optical Devices

Original Manuscript: October 22, 2012
Revised Manuscript: November 30, 2012
Manuscript Accepted: November 30, 2012
Published: December 17, 2012

Toshitaka Wakayama, Kazuki Komaki, Yukitoshi Otani, and Toru Yoshizawa, "Achromatic axially symmetric wave plate," Opt. Express 20, 29260-29265 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities, ” in Progress in Optics, (Elsevier, Amsterdam, 2009).
  2. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009). [CrossRef]
  3. S. Matsuo, “Matrix calculus for axially symmetric polarized beam,” Opt. Express19(13), 12815–12824 (2011). [CrossRef] [PubMed]
  4. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  5. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the Angular Momentum of light,” Phys. Rev. Lett.107(5), 053601 (2011). [CrossRef] [PubMed]
  6. G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam-Berry phase and the angular momentum of light,” Phys. Rev. Lett.108(19), 190401 (2012). [CrossRef] [PubMed]
  7. J. R. Fontana and R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys.54(8), 4285–4288 (1983). [CrossRef]
  8. A. V. Nesterov and V. G. Niziev, “Laser beam with axially symmetric polarization,” J. Phy. Appl. Phys. (Berl.)33, 1817–1822 (2000).
  9. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express18(21), 22305–22313 (2010). [CrossRef] [PubMed]
  10. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009). [CrossRef]
  11. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett.21(11), 827–829 (1996). [CrossRef] [PubMed]
  12. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature351(6321), 49–50 (1991). [CrossRef]
  13. S. C. McEldowney, D. M. Shemo, and R. A. Chipman, “Vortex retarders produced from photo-aligned liquid crystal polymers,” Opt. Express16(10), 7295–7308 (2008). [CrossRef] [PubMed]
  14. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett.35(15), 1271–1272 (1999). [CrossRef]
  15. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett.79(11), 1587–1589 (2001). [CrossRef]
  16. M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011). [CrossRef]
  17. Y. Kozawa and S. Sato, “Single higher-order transverse mode operation of a radially polarized Nd:YAG laser using an annularly reflectivity-modulated photonic crystal coupler,” Opt. Lett.33(19), 2278–2280 (2008). [CrossRef] [PubMed]
  18. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Polychromatic vectorial vortex formed by geometric phase elements,” Opt. Lett.32(7), 847–849 (2007). [CrossRef] [PubMed]
  19. M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett.33(15), 1771–1773 (2008). [CrossRef] [PubMed]
  20. M. Endo, M. Sasaki, and R. Koseki, “Analysis of an optical resonator formed by a pair of specially shaped axicons,” J. Opt. Soc. Am. A29(4), 507–512 (2012). [CrossRef] [PubMed]
  21. G. Milione, H. I. Sztul, D. A. Nolan, J. Kim, M. Etienne, J. McCarthy, J. Wang, and R. R. Alfano, “Cylindrical vector beam generation from a multi elliptical core optical fiber,” ” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuB2.
  22. G. A. Swartzlander., “A chromatic optical vortex lens,” Opt. Lett.31(13), 2042–2044 (2006). [CrossRef] [PubMed]
  23. X. C. Yuan, J. Lin, J. Bu, and R. E. Burge, “Achromatic design for the generation of optical vortices based on radial spiral phase plates,” Opt. Express16(18), 13599–13605 (2008). [CrossRef] [PubMed]
  24. Y. Tokizane, K. Oka, and R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express17(17), 14517–14525 (2009). [CrossRef] [PubMed]
  25. Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express17(26), 24198–24207 (2009). [CrossRef] [PubMed]
  26. F. Mooney, “A modification of the Fresnel rhomb,” J. Opt. Soc. Am.42(3), 181–182 (1952). [CrossRef]
  27. M. Born and E. Wolf, Principle of Optics 7th ed. (Cambridge Univ. press., UK, 1999).
  28. G. Yun, K. Crabtree, and R. A. Chipman, “Three-dimensional polarization ray-tracing calculus I: definition and diattenuation,” Appl. Opt.50(18), 2855–2865 (2011). [CrossRef] [PubMed]
  29. G. Yun, S. C. McClain, and R. A. Chipman, “Three-dimensional polarization ray-tracing calculus II: retardance,” Appl. Opt.50(18), 2866–2874 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited