OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29266–29275

Doubly resonant surface-enhanced Raman scattering on gold nanorod decorated inverse opal photonic crystals

Le Dac Tuyen, An Chi Liu, Chia-Chi Huang, Pei-Cheng Tsai, Jian Hung Lin, Chin-Wei Wu, Lai-Kwan Chau, Tzyy Schiuan Yang, Le Quoc Minh, Hung-Chih Kan, and Chia Chen Hsu  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29266-29275 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2001 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel type of surface-enhanced Raman scattering (SERS) substrate constituted of a 3-dimensinal polymeric inverse opal (IO) photonic crystal frame with gold nanorods (Au-NRs) decorating on the top layer. This substrate employs resonant excitation as well as constructive backward scattering of Raman signals to produce large enhancement of SERS output. For the incoming excitation, Au-NRs with appropriate aspect ratio were adopted to align their longitudinal localized surface plasmon band with the excitation laser wavelength. For the outgoing SERS signal, the spectral position of the photonic band gap was tuned to reflect Raman-scattered light constructively. This SERS substrate produces not only strong but also uniform SERS output due to the well control of Au-NRs distribution by the periodic IO structure, readily suitable for sensing applications.

© 2012 OSA

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(160.5293) Materials : Photonic bandgap materials
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:

Original Manuscript: October 25, 2012
Revised Manuscript: November 26, 2012
Manuscript Accepted: November 29, 2012
Published: December 17, 2012

Le Dac Tuyen, An Chi Liu, Chia-Chi Huang, Pei-Cheng Tsai, Jian Hung Lin, Chin-Wei Wu, Lai-Kwan Chau, Tzyy Schiuan Yang, Le Quoc Minh, Hung-Chih Kan, and Chia Chen Hsu, "Doubly resonant surface-enhanced Raman scattering on gold nanorod decorated inverse opal photonic crystals," Opt. Express 20, 29266-29275 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced Raman scattering: physics and applications (Springer, 2006).
  2. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005). [CrossRef]
  3. S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010). [CrossRef]
  4. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B109(22), 11279–11285 (2005). [CrossRef] [PubMed]
  5. J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B110(35), 17444–17451 (2006). [CrossRef] [PubMed]
  6. A. Otto, “The “chemical” (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc.36(6-7), 497–509 (2005). [CrossRef]
  7. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57(3), 783–826 (1985). [CrossRef]
  8. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974). [CrossRef]
  9. D. L. Jeanmarie and R. P. Van Duyne, “Surface Raman spectroelectrochemistry, part 1: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem.84, 1–20 (1977).
  10. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  11. C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, “Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates,” Phys. Chem. Chem. Phys.8(1), 165–170 (2006). [CrossRef] [PubMed]
  12. P. F. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys.76(1), 751–752 (1982). [CrossRef]
  13. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004). [CrossRef] [PubMed]
  14. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B107(37), 9964–9972 (2003). [CrossRef]
  15. M. Nikbakht and M. H. Mahdieh, “Optical responses of gold nanoparticles undergoing a change to cluster aggregates and laser beam characteristics effect,” J. Phys. Chem. C115(5), 1561–1568 (2011). [CrossRef]
  16. C. Shi, L. Tian, L. Wu, and J. Zhu, “Layered aggregates of gold nanoparticles: solution and surface-assembled structures,” J. Phys. Chem. C111(3), 1243–1247 (2007). [CrossRef]
  17. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83(21), 4357–4360 (1999). [CrossRef]
  18. C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12(4), 2037–2044 (2012). [CrossRef] [PubMed]
  19. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett.5(11), 2262–2267 (2005). [CrossRef] [PubMed]
  20. A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface-enhanced Raman scattering,” Opt. Express16(17), 12469–12477 (2008). [CrossRef] [PubMed]
  21. F. H. Scholes, T. J. Davis, K. C. Vernon, D. Lau, S. A. Furman, and A. M. Glenn, “A hybrid substrate for surface-enhanced Raman scattering spectroscopy: coupling metal nanoparticles to strong localised fields on a micro-structured surface,” J. Raman Spectrosc.43(2), 196–201 (2012). [CrossRef]
  22. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.)18(4), 491–495 (2006). [CrossRef]
  23. H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater.22(1), 218–224 (2012). [CrossRef]
  24. C. Y. Wu, C. C. Huang, J. S. Jhang, A. C. Liu, C. C. Chiang, M. L. Hsieh, P. J. Huang, D. Tuyen, Q. Minh, T. S. Yang, L. K. Chau, H. C. Kan, and C. C. Hsu, “Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra,” Opt. Express17(24), 21522–21529 (2009). [CrossRef] [PubMed]
  25. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci (Lond.)241, 20–22 (1973).
  26. L. D. Tuyen, C. Y. Wu, T. K. Anh, L. Q. Minh, H. C. Kan, and C. C. Hsu, “Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals,” J. Exp. Nanosci.7(2), 198–204 (2012). [CrossRef]
  27. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003). [CrossRef]
  28. C. C. Huang, C. H. Huang, I. T. Kuo, L. K. Chau, and T. S. Yang, “Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration,” Colloids Surf. A Physicochem. Eng. Asp.409, 61–68 (2012). [CrossRef]
  29. R. Atkin, V. S. J. Craig, E. J. Wanless, and S. Biggs, “The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface,” J. Colloid Interface Sci.266(2), 236–244 (2003). [CrossRef] [PubMed]
  30. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103(40), 8410–8426 (1999). [CrossRef]
  31. J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Goldnanorods: synthesis, characterization and applications,” Coord. Chem. Rev.249(17-18), 1870–1901 (2005). [CrossRef]
  32. S. Yun, Y. K. Park, S. K. Kim, and S. Park, “Linker-molecule-free gold nanorod layer-by-layer films for surface-enhanced Raman scattering,” Anal. Chem.79(22), 8584–8589 (2007). [CrossRef] [PubMed]
  33. G. Wang, H. Y. Park, R. J. Lipert, and M. D. Porter, “Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays,” Anal. Chem.81(23), 9643–9650 (2009). [CrossRef] [PubMed]
  34. C. G. Blatchford, J. R. Campbell, and J. A. Creighton, “Plasma resonance − enhanced Raman scattering by adsorbates on gold colloids: the effects of aggregation,” Surf. Sci.120(2), 435–455 (1982). [CrossRef]
  35. C. McLaughlin, D. Graham, and W. E. Smith, “Comparison of resonant and nonresonant conditions on the concentration dependence of surface enhanced Raman scattering from a dye adsorbed on silver colloid,” J. Phys. Chem. B106(21), 5408–5412 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited