OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29276–29283

Generation of optical accelerating regular triple-cusp beams and their topological structures

Zhijun Ren, Liangwei Dong, Chaofu Ying, and Changjiang Fan  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29276-29283 (2012)
http://dx.doi.org/10.1364/OE.20.029276


View Full Text Article

Enhanced HTML    Acrobat PDF (1825 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By using the diffractive optical elements written onto a spatial light modulator, we experimentally obtain optical regular triple-cusp beams. Their propagation characteristics and topological structures are subsequently investigated. The experimental results demonstrate that each cusp of an optical regular triple-cusp beam, similar to the main lobe of an Airy beam, propagates along curved paths in free space, hence tends to adopt the “transverse acceleration” property. Moreover, we experimentally prove that optical regular triple-cusp beams can resist local distorted deformation. Such beams can thus be applied in adverse optical environments, such as a probe for the exploration of microscopic world and as an energy source for research on high-field laser–matter interactions.

© 2012 OSA

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(350.5500) Other areas of optics : Propagation
(070.3185) Fourier optics and signal processing : Invariant optical fields

ToC Category:
Physical Optics

History
Original Manuscript: November 1, 2012
Revised Manuscript: November 28, 2012
Manuscript Accepted: November 29, 2012
Published: December 17, 2012

Citation
Zhijun Ren, Liangwei Dong, Chaofu Ying, and Changjiang Fan, "Generation of optical accelerating regular triple-cusp beams and their topological structures," Opt. Express 20, 29276-29283 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29276


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett.99(21), 213901 (2007). [CrossRef] [PubMed]
  2. V. Pasiskevicius, “Engineering Airy beams,” Nat. Photonics3(7), 374–375 (2009). [CrossRef]
  3. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics2(11), 675–678 (2008). [CrossRef]
  4. Y. Kaganovsky and E. Heyman, “Nonparaxial wave analysis of three-dimensional Airy beams,” J. Opt. Soc. Am. A29(5), 671–688 (2012). [CrossRef] [PubMed]
  5. S. Vo, K. Fuerschbach, K. P. Thompson, M. A. Alonso, and J. P. Rolland, “Airy beams: a geometric optics perspective,” J. Opt. Soc. Am. A27(12), 2574–2582 (2010). [CrossRef] [PubMed]
  6. Y. Hu, S. Huang, P. Zhang, C. Lou, J. Xu, and Z. Chen, “Persistence and breakdown of Airy beams driven by an initial nonlinearity,” Opt. Lett.35(23), 3952–3954 (2010). [CrossRef] [PubMed]
  7. I. Kaminer, M. Segev, and D. N. Christodoulides, “Self-Accelerating Self-Trapped Optical Beams,” Phys. Rev. Lett.106(21), 213903 (2011). [CrossRef] [PubMed]
  8. A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A84(2), 021807 (2011). [CrossRef]
  9. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Filamentation of Femtosecond Self-Bending Airy Beams,” IEEE. OSA/CLEO/IQEC. 978–1-55752–869–8/09 (2009).
  10. J. X. Li, W. P. Zang, and J. G. Tian, “Vacuum laser-driven acceleration by Airy beams,” Opt. Express18(7), 7300–7306 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-7-7300 . [CrossRef] [PubMed]
  11. J. X. Li, W. P. Zang, and J. G. Tian, “Analysis of electron capture acceleration channel in an Airy beam,” Opt. Lett.35(19), 3258–3260 (2010). [CrossRef] [PubMed]
  12. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009). [CrossRef] [PubMed]
  13. A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett.35(12), 2082–2084 (2010). [CrossRef] [PubMed]
  14. W. Liu, D. N. Neshev, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Plasmonic Airy beam manipulation in linear optical potentials,” Opt. Lett.36(7), 1164–1166 (2011). [CrossRef] [PubMed]
  15. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam Generated by In-Plane Diffraction,” Phys. Rev. Lett.107(12), 126804 (2011). [CrossRef] [PubMed]
  16. S. Barwick, “Accelerating regular polygon beams,” Opt. Lett.35(24), 4118–4120 (2010). [CrossRef] [PubMed]
  17. J. F. Nye, “Unfolding higher-order wave dislocation clusters and catastrophe theory,” J. Opt. A, Pure Appl. Opt.10(7), 075010 (2008). [CrossRef]
  18. O. Vallée and M. Soares, Airy Functions and Applications to Physics (Imperial College Press, 2004).
  19. T. Poston and I. Stewart, Catastrophe Theory and Its Application (Pitman, 1978).
  20. X. X. Chu, G. Q. Zhou, and R. P. Chen, “Analytical study of the self-healing property of Airy beams,” Phys. Rev. A85(1), 013815 (2012). [CrossRef]
  21. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express16(17), 12880–12891 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-17-12880 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited