OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29309–29318

Nanosecond monolithic Mach-Zehnder fiber switch

Patrik Rugeland, Oleksandr Tarasenko, and Walter Margulis  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29309-29318 (2012)
http://dx.doi.org/10.1364/OE.20.029309


View Full Text Article

Enhanced HTML    Acrobat PDF (3111 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An electrically controlled high-speed all-fiber switch is investigated. It is based on a monolithic Mach-Zehnder interferometer using a Gemini fiber. The fiber is provided with internal electrodes for active control of the phase using high-voltage electrical pulses. The demonstrated switching speed is 20 ns. The monolithic design guarantees that the off- and on-states are attained simultaneously for a broad range of wavelengths (50 nm). The interferometer can be switched-off using a second electrode, providing a 15 ns long optical pulse.

© 2012 OSA

OCIS Codes
(230.1040) Optical devices : Acousto-optical devices
(320.4240) Ultrafast optics : Nanosecond phenomena
(320.5550) Ultrafast optics : Pulses
(060.4005) Fiber optics and optical communications : Microstructured fibers
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: October 23, 2012
Revised Manuscript: December 5, 2012
Manuscript Accepted: December 5, 2012
Published: December 18, 2012

Citation
Patrik Rugeland, Oleksandr Tarasenko, and Walter Margulis, "Nanosecond monolithic Mach-Zehnder fiber switch," Opt. Express 20, 29309-29318 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29309


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, “Femotosecond switching in a dual-core-fiber nonlinear coupler,” Opt. Lett.13(10), 904–906 (1988). [CrossRef] [PubMed]
  2. B. K. Nayar, N. Finlayson, N. J. Doran, S. T. Davey, D. L. Williams, and J. W. Arkwright, “All-optical switching in a 200-m twin-core fiber nonlinear Mach-Zehnder interferometer,” Opt. Lett.16(6), 408–410 (1991). [CrossRef] [PubMed]
  3. J. E. Heebner and R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett.24(12), 847–849 (1999). [CrossRef] [PubMed]
  4. I. V. Kabakova, B. Corcoran, J. A. Bolger, M. C. de Sterke, and B. J. Eggleton, “All-optical self-switching in optimized phase-shifted fiber Bragg grating,” Opt. Express17(7), 5083–5088 (2009). [CrossRef] [PubMed]
  5. P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag.40(3), 88–95 (2002). [CrossRef]
  6. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16 x 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol.19(3), 371–379 (2001). [CrossRef]
  7. G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol.12(10), 1807–1819 (1994). [CrossRef]
  8. R. Roy, P. A. Schulz, and A. Walther, “Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser,” Opt. Lett.12(9), 672–674 (1987). [CrossRef] [PubMed]
  9. M. V. Andrés, J. L. Cruz, A. Díez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5(2), 93–99 (2008). [CrossRef]
  10. M. Bello-Jiménez, C. Cuadrado-Laborde, D. Sáez-Rodríguez, A. Diez, J. L. Cruz, and M. V. Andrés, “Actively mode-locked fiber ring laser by intermodal acousto-optic modulation,” Opt. Lett.35(22), 3781–3783 (2010). [CrossRef] [PubMed]
  11. O. Tarasenko and W. Margulis, “Electro-optical fiber modulation in a Sagnac interferometer,” Opt. Lett.32(11), 1356–1358 (2007). [CrossRef] [PubMed]
  12. M. Malmström, W. Margulis, O. Tarasenko, V. Pasiskevicius, and F. Laurell, “Soliton generation from an actively mode-locked fiber laser incorporating an electro-optic fiber modulator,” Opt. Express20(3), 2905–2910 (2012). [CrossRef] [PubMed]
  13. J. Li, N. Myrén, W. Margulis, B. Ortega, G. Puerto, D. Pastor, J. Capmany, M. Belmonte, and V. Pruneri, “Systems measurements of 2x2 poled fiber switch,” IEEE Photon. Technol. Lett.17(12), 2571–2573 (2005). [CrossRef]
  14. A. C. Boucouvalas and G. Georgiou, “Fibre-optic interferometric tunable switch using the thermo-optic effect,” Electron. Lett.21, 512–514 (1985).
  15. R. Bahuguna, M. Mina, and R. J. Weber, “Mach-Zehnder interferometric switch utilizing Faraday rotation,” IEEE Trans. Magn.43(6), 2680–2682 (2007). [CrossRef]
  16. P. Rugeland, C. Sterner, and W. Margulis, “Monolithic interferometers using Gemini fiber,” IEEE Photon. Technol. Lett.23(14), 1001–1003 (2011). [CrossRef]
  17. W. Margulis, Z. Yu, M. Malmström, P. Rugeland, H. Knape, and O. Tarasenko, “High-speed electrical switching in optical fibers,” Appl. Opt.50(25), E65–E75 (2011). [CrossRef]
  18. Z. Yu, O. Tarasenko, W. Margulis, and P.-Y. Fonjallaz, “Birefringence switching of Bragg gratings in fibers with internal electrodes,” Opt. Express16(11), 8229–8235 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited