OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29347–29352

Characterization of optical resonators with an incoherent light

Hidemi Tsuchida  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29347-29352 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new and simple technique is proposed and demonstrated for measuring the free spectral range (FSR) and bandwidth of optical resonators. For a broadband light input the resonator output forms an incoherent frequency comb with the spacing and linewidth corresponding to the FSR and bandwidth of the resonator, respectively. Photodetection of the resonator output produces heterodyne beat signals between the comb lines, from which the above two parameters can be estimated by spectrum analysis. The proposed technique overcomes the difficulties of conventional methods base on frequency-swept lasers. As demonstrations, fiber-optic Fabry-Perot and ring resonators are successfully characterized with the bandwidths as small as 10 kHz.

© 2012 OSA

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.4780) Lasers and laser optics : Optical resonators
(060.2840) Fiber optics and optical communications : Heterodyne

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 16, 2012
Revised Manuscript: December 10, 2012
Manuscript Accepted: December 11, 2012
Published: December 18, 2012

Hidemi Tsuchida, "Characterization of optical resonators with an incoherent light," Opt. Express 20, 29347-29352 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Malowicki, M. L. Fanto, M. J. Hayduk, and P. J. Delfyett., “Harmonically mode-locked glass waveguide laser with 21-fs timing jitter,” IEEE Photon. Technol. Lett.17(1), 40–42 (2005). [CrossRef]
  2. T. Okamoto, S. Sudo, K. Tsuruoka, M. L. Nielsen, K. Mizutani, K. Sato, and K. Kudo, “A monolithic wideband wavelength-tunable laser diode integrated with a ring/MZI loop filter,” IEEE J. Sel. Top. Quantum Electron.15(3), 488–493 (2009). [CrossRef]
  3. S. Y. Set, M. Jablonski, K. Hsu, C. S. Goh, and K. Kikuchi, “Rapid amplitude and group-delay measurement system based on intra-cavity-modulated swept-lasers,” IEEE Trans. Instrum. Meas.53(1), 192–196 (2004). [CrossRef]
  4. L. Duan and K. Gibble, “Locking lasers with large FM noise to high-Q cavities,” Opt. Lett.30(24), 3317–3319 (2005). [CrossRef] [PubMed]
  5. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011). [CrossRef] [PubMed]
  6. V. Roncin, S. Lobo, L. Bramerie, A. O’Hare, and J.-C. Simon, “System characterization of a passive 40 Gb/s all optical clock recovery ahead of the receiver,” Opt. Express15(10), 6003–6009 (2007). [CrossRef] [PubMed]
  7. M. Matsuura and E. Oki, “Optical carrier regeneration for carrier wavelength reuse in a multicarrier distributed WDM network,” IEEE Photon. Technol. Lett.22(11), 808–810 (2010). [CrossRef]
  8. L. L. Wang and T. Kowalcyzk, “A novel locking technique for very narrow tunable optical filters with sub-GHz 3-dB bandpass,” IEEE Photon. Technol. Lett.22(17), 1267–1269 (2010). [CrossRef]
  9. Y. Inoue, T. Kominato, Y. Tachikawa, and O. Ishida, “Finesse evaluation of integrated-optic ring resonators with heterodyne detection technique,” Electron. Lett.28(7), 684–686 (1992). [CrossRef]
  10. K. An, C. Yang, R. R. Dasari, and M. S. Feld, “Cavity ring-down technique and its application to the measurement of ultraslow velocities,” Opt. Lett.20(9), 1068–1070 (1995). [CrossRef] [PubMed]
  11. N. Uehara, A. Ueda, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultralow-loss mirror of the parts-in-106 level at 1064 nm,” Opt. Lett.20(6), 530–532 (1995). [CrossRef] [PubMed]
  12. B. J. J. Slagmolen, M. B. Gray, K. G. Baigent, and D. E. McClelland, “Phase-sensitive reflection technique for characterization of a Fabry-Perot interferometer,” Appl. Opt.39(21), 3638–3643 (2000). [CrossRef] [PubMed]
  13. A. Schliesser, C. Gohle, T. Udem, and T. W. Hänsch, “Complete characterization of a broadband high-finesse cavity using an optical frequency comb,” Opt. Express14(13), 5975–5983 (2006). [CrossRef] [PubMed]
  14. C. R. Locke, D. Stuart, E. N. Ivanov, and A. N. Luiten, “A simple technique for accurate and complete characterisation of a Fabry-Perot cavity,” Opt. Express17(24), 21935–21943 (2009). [CrossRef] [PubMed]
  15. D. Mandridis, I. Ozdur, M. Bagnell, and P. J. Delfyett, “Free spectral range measurement of a fiberized Fabry-Perot etalon with sub-Hz accuracy,” Opt. Express18(11), 11264–11269 (2010). [CrossRef] [PubMed]
  16. M. Aketagawa, S. Kimura, T. Yashiki, H. Iwata, T. Q. Banh, and K. Hirata, “Measurement of a free spectral range of a Fabry–Perot cavity using frequency modulation and null method under off-resonance conditions,” Meas. Sci. Technol.22(2), 025302 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited