OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29447–29456

Compound resonance-induced coupling effects in composite plasmonic metamaterials

Arash Farhang, S. Anantha Ramakrishna, and Olivier J. F. Martin  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29447-29456 (2012)
http://dx.doi.org/10.1364/OE.20.029447


View Full Text Article

Enhanced HTML    Acrobat PDF (6180 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study a compound plasmonic system composed of a periodic Au grating array placed close to a thin Au film. The study is not limited to normal incidence and dispersion diagrams are computed for a broad variety of parameters. In addition to identifying localized and propagating modes and the coupling/hybridization interactions between them, we go further and identify modes of compound nature, i.e. those exhibiting both localized and propagating characteristics, and discuss which plasmon modes can exhibit such a behavior in the system at hand and how structural parameters play a central part in the spectral response of such modes.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: September 6, 2012
Revised Manuscript: November 19, 2012
Manuscript Accepted: November 29, 2012
Published: December 19, 2012

Citation
Arash Farhang, S. Anantha Ramakrishna, and Olivier J. F. Martin, "Compound resonance-induced coupling effects in composite plasmonic metamaterials," Opt. Express 20, 29447-29456 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29447


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett.24(15), 1011–1013 (1999). [CrossRef] [PubMed]
  2. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett.7(5), 1376–1380 (2007). [CrossRef] [PubMed]
  3. G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: A mode solver based on density of states formulation,” Phys. Rev. B80(11), 115419 (2009). [CrossRef]
  4. A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A77(2), 021804 (2008). [CrossRef]
  5. A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys.11(1), 015002 (2009). [CrossRef]
  6. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  7. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999). [CrossRef]
  8. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007). [CrossRef] [PubMed]
  9. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007). [CrossRef] [PubMed]
  10. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003). [CrossRef] [PubMed]
  11. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209(2), 171–176 (2004). [CrossRef] [PubMed]
  12. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  13. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5(11), 2335–2339 (2005). [CrossRef] [PubMed]
  14. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006). [CrossRef] [PubMed]
  15. A. Unger, U. Rietzler, R. Berger, and M. Kreiter, “Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids,” Nano Lett.9(6), 2311–2315 (2009). [CrossRef] [PubMed]
  16. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10(3), 1006–1011 (2010). [CrossRef] [PubMed]
  17. G. Lévêque and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: an optical analog of the xylophone,” Phys. Rev. Lett.100(11), 117402 (2008). [CrossRef] [PubMed]
  18. D. Brunazzo, E. Descrovi, and O. J. F. Martin, “Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film,” Opt. Lett.34(9), 1405–1407 (2009). [CrossRef] [PubMed]
  19. J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express15(17), 10533–10539 (2007). [CrossRef] [PubMed]
  20. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett.30(24), 3404–3406 (2005). [CrossRef] [PubMed]
  21. A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc.229(2), 344–353 (2008). [CrossRef] [PubMed]
  22. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34(3), 244–246 (2009). [CrossRef] [PubMed]
  23. J. DiMaria and R. Paiella, “Plasmonic dispersion engineering of coupled metal nanoparticle-film systems,” J. Appl. Phys.111(10), 103102 (2012). [CrossRef]
  24. F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B76(16), 165410 (2007). [CrossRef]
  25. G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express14(21), 9971–9981 (2006). [CrossRef] [PubMed]
  26. G. Lévêque and O. J. F. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett.31(18), 2750–2752 (2006). [CrossRef] [PubMed]
  27. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. (Deerfield Beach Fla.)19(21), 3628–3632 (2007). [CrossRef]
  28. J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett.8(8), 2245–2252 (2008). [CrossRef] [PubMed]
  29. J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett.12(4), 1757–1764 (2012). [CrossRef] [PubMed]
  30. P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett.4(11), 2209–2213 (2004). [CrossRef]
  31. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B75(23), 235426 (2007). [CrossRef]
  32. K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: Evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett.9(7), 2623–2629 (2009). [CrossRef] [PubMed]
  33. J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. Van Dorpe, “Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering,” Appl. Phys. Lett.97(16), 163106 (2010). [CrossRef]
  34. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90(5), 057401 (2003). [CrossRef] [PubMed]
  35. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys.116(15), 6755–6759 (2002). [CrossRef]
  36. G. Lévêque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys.100, 124301 (2006). [CrossRef]
  37. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer Tracts Mod. Phys.111, 1–133 (1988).
  38. P. B. Johnson and R. W. Christy, “Optical constants of the nobel metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  39. B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A27(10), 2261–2271 (2010). [CrossRef] [PubMed]
  40. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26(4), 732–740 (2009). [CrossRef] [PubMed]
  41. A. M. Kern and J. F. Olivier, “Modeling near-field properties of plasmonic nanoparticles: a surface integral approach,” in SPIE Optics + Photonics 2009, 2009), 739518–739511.
  42. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009). [CrossRef]
  43. S. A. Maier, Plasmonics: Fundamentals and Applications (Spinger-Verlag, 2007).
  44. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Shultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” New J. Phys.2000, 2 (2000).
  45. B. E. A. Saleh and M. C. Teich, “Guided-Wave Optics,” in Fundamentals of Photonics (John Wiley & Sons, Inc., 2001), pp. 238–271.
  46. A. Farhang and O. J. F. Martin, “Plasmon delocalization onset in finite sized nanostructures,” Opt. Express19(12), 11387–11396 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (2708 KB)      QuickTime
» Media 2: MOV (2715 KB)      QuickTime
» Media 3: MOV (2772 KB)      QuickTime
» Media 4: MOV (2681 KB)      QuickTime
» Media 5: MOV (2712 KB)      QuickTime
» Media 6: MOV (2704 KB)      QuickTime
» Media 7: MOV (2699 KB)      QuickTime
» Media 8: MOV (2778 KB)      QuickTime
» Media 9: MOV (2699 KB)      QuickTime
» Media 10: MOV (2739 KB)      QuickTime
» Media 11: MOV (2685 KB)      QuickTime
» Media 12: MOV (2716 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited