OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29488–29499

Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells

M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A.G. Aberle  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29488-29499 (2012)
http://dx.doi.org/10.1364/OE.20.029488


View Full Text Article

Enhanced HTML    Acrobat PDF (1004 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light trapping is of very high importance for silicon photovoltaics (PV) and especially for thin-film silicon solar cells. In this paper we investigate and compare theoretically the light trapping properties of periodic and stochastic structures having similar geometrical features. The theoretical investigations are based on the actual surface geometry of a scattering structure, characterized by an atomic force microscope. This structure is used for light trapping in thin-film microcrystalline silicon solar cells. Very good agreement is found in a first comparison between simulation and experimental results. The geometrical parameters of the stochastic structure are varied and it is found that the light trapping mainly depends on the aspect ratio (length/height). Furthermore, the maximum possible light trapping with this kind of stochastic structure geometry is investigated. In a second step, the stochastic structure is analysed and typical geometrical features are extracted, which are then arranged in a periodic structure. Investigating the light trapping properties of the periodic structure, we find that it performs very similar to the stochastic structure, in agreement with reports in literature. From the obtained results we conclude that a potential advantage of periodic structures for PV applications will very likely not be found in the absorption enhancement in the solar cell material. However, uniformity and higher definition in production of these structures can lead to potential improvements concerning electrical characteristics and parasitic absorption, e.g. in a back reflector.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(290.5880) Scattering : Scattering, rough surfaces
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Energy

History
Original Manuscript: September 27, 2012
Revised Manuscript: December 6, 2012
Manuscript Accepted: December 6, 2012
Published: December 19, 2012

Citation
M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, and A.G. Aberle, "Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells," Opt. Express 20, 29488-29499 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29488


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells,” J. Appl. Phys.101(7), 074903 (2007). [CrossRef]
  2. D. Dominé, F. J. Haug, C. Battaglia, and C. Ballif, “Modeling of light scattering from micro- and nanotextured surfaces,” J. Appl. Phys.107(4), 044504 (2010). [CrossRef]
  3. C. Battaglia, K. Söderström, J. Escarré, F. J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin-film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010). [CrossRef]
  4. Press release, Oerlikon, see e.g. SolarServer.com, Archive 2012, KW 03, “PV production: Oerlikon Solar’s 2nd generation “ThinFab”,” presented in Abu Dhabi delivers 23% investment cost reduction and 17% higher capacity; record thin film silicon cell reaches 12.5% efficiency”.
  5. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–582 (1983). [CrossRef]
  6. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34(14), 2476–2482 (1995). [CrossRef] [PubMed]
  7. S. H. Zaidi, J. M. Gee, and D. S. Ruby, “Visual system-response functions and estimating reflectance,” Proc. 28th IEEE Photovoltaic Specialists Conference, 395–398 (2000).
  8. M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells - optimum parameters and loss mechanisms,” Prog. Photovolt. Res. Appl.20(7), 862–873 (2012). [CrossRef]
  9. A. Mellor, I. Tobias, A. Marti, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl.19(6), 676–687 (2011). [CrossRef]
  10. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3), A366–A380 (2010). [CrossRef]
  11. J. Gjessing, A. S. Sudbo, and E. S. Marstein, “A novel back-side light trapping structure for thin silicon solar cells,” J. Euro. Opt. Soc.6, 11020 1–4 (2011).
  12. C. van Trigt, “Visual system-response functions and estimating reflectance,” J. Opt. Soc. Am. A14(4), 741–755 (1997). [CrossRef] [PubMed]
  13. E. Yablonovitch, “Statistical Ray Optics,” J. Opt. Soc. Am. A72(7), 899–907 (1982). [CrossRef]
  14. T. Kirchartz in, “Physics of nanostructured solar cells,” V. Badescu (Edt.), Nova Science Publishers, 1–40 (2009)
  15. H. Li, R. Franken, R. L. Stolk, J. K. Rath, and R. E. I. Schropp, “Mechanism of shunting of nanocrystalline silicon solar cells deposited on rough Ag/ZnO substrates,” So. State. Phen.131–133, 27–32 (2007).
  16. M. Peters, B. Bläsi, S. W. Glunz, A. G. Aberle, J. Luther, and C. Battaglia, “Optical Simulation of Silicon Thin-Film Solar Cells,” En. Proc.15, 212–219 (2012). [CrossRef]
  17. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells,” Nano Lett.11(10), 4239–4245 (2011). [CrossRef] [PubMed]
  18. B. Bläsi, H. Hauser, and A. J. Wolf, “Photon management structures for solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:. [CrossRef]
  19. M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Bläsi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” proceedings of SPIE 8438, Photonics for Solar Energy SystemsIV, 84380F (2012), doi:. [CrossRef]
  20. K. Jäger, R. A. C. M. M. van Swaaij, and M. Zeman, “A Full Scalar Scattering Model for Nano-Textured Interfaces”, in “Optical Nanostructures and Advanced Materials for Photovoltaics,” proceedings of the Optical Society of America, PWC5 (2011).
  21. B. Vet, B. Grancic, O. Isabella, S. Solntsev, and M. Zeman, “Optical and Electrical Simulations of Advanced Silicon Based Solar Cell Devices,” Proceedings of the 24th European Photovoltaic Solar Energy Conference 2682–2685 (2009).
  22. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A12(5), 1077–1086 (1995). [CrossRef]
  23. P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled wave method for transverse magnetic polarization,” J. Mod. Opt.45(7), 1357–1374 (1998). [CrossRef]
  24. International Electrotechnical Standard, (IEC 60904–1), www.iec.ch .
  25. H. E. A. Elgamel, “High efficiency polycrystalline silicon solar cells using low temperature PECVD process,” IEEE Trans. Electron. Dev.45, 2131–2137 (1998).
  26. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Krol, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004). [CrossRef]
  27. A. V. Shah, ed., “Thin-film Silicon Solar Cell Cells,” EPFL Press 1st edition, 216 - 231 (2010).
  28. C. Battaglia, J. Escarre, K. Soederstroem, M. Boccard, and C. Ballif, “Experimental Evaluation of the Light Trapping Potential of Optical Nanostructures for Thin-Film Silicon Solar Cells,” En. Proc.15, 206–211 (2012). [CrossRef]
  29. S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express19(S4Suppl 4), A865–A874 (2011). [CrossRef] [PubMed]
  30. D. Domine, “The role of front electrodes and intermediate reflectors in the optoelectronic properties of high efficiency micromorph solar cells,” PhD Thesis, University of Neuchatel (2009).
  31. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light Trapping in Solar Cells: Can Periodic Beat Random?” ACS Nano6(3), 2790–2797 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited