OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29531–29539

Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics

Ryo Yasuhara, Hiroaki Furuse, Akifumi Iwamoto, Junji Kawanaka, and Takagimi Yanagitani  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29531-29539 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (992 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The temperature dependence of the thermo-optic effect in cryogenically cooled Yb:YAG ceramics was evaluated by measuring the thermo-optic coefficient (the derivative of refractive index with respect to temperature, i.e., dn/dT), thermal expansion coefficient (α), and thermal conductivity (κ) between 70 and 300 K. These parameters significantly improved at low temperature. Observed values indicated that a laser gain medium cooled to 70 K can sustain a thermal load up to 20 times higher than that at 300 K, for comparable thermo-optic effects. To our best knowledge, this is the first quantitative evaluation of the improvement in thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics.

© 2012 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 31, 2012
Revised Manuscript: November 26, 2012
Manuscript Accepted: November 26, 2012
Published: December 19, 2012

Ryo Yasuhara, Hiroaki Furuse, Akifumi Iwamoto, Junji Kawanaka, and Takagimi Yanagitani, "Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics," Opt. Express 20, 29531-29539 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, “Residual elastic strain due to laser shock peening,” J. Strain Analysis41(2), 113–120 (2006). [CrossRef]
  2. K. W. D. Ledingham, P. McKenna, and R. P. Singhal, “Applications for nuclear phenomena generated by ultra-intense lasers,” Science300(5622), 1107–1111 (2003). [CrossRef] [PubMed]
  3. J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV X-ray generation with a femtosecond laser,” Phys. Rev. Lett.68(10), 1527–1530 (1992). [CrossRef] [PubMed]
  4. R. Yasuhara, M. Yoshikawa, M. Morimoto, I. Yamada, K. Kawahata, H. Funaba, Y. Shima, J. Kohagura, M. Sakamoto, Y. Nakashima, T. Imai, and T. Minami, “Design of the polarization multi-pass Thomson scattering system,” Rev. Sci. Instrum.83(10), 10E326 (2012). [CrossRef] [PubMed]
  5. E. I. Moses, “Ignition on the national ignition facility: a path towards inertial fusion energy,” Nuc. Fus.49(10), 104022 (2009). [CrossRef]
  6. T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature398(6727), 489–492 (1999). [CrossRef]
  7. A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, “High-average-power femto-petawatt laser pumped by the mercury laser facility,” J. Opt. Soc. Am. B25(7), B57–B61 (2008). [CrossRef]
  8. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett.33(15), 1711–1713 (2008). [CrossRef] [PubMed]
  9. M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B101(1–2), 93–102 (2010). [CrossRef]
  10. J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photon. J.3(2), 245–248 (2011). [CrossRef]
  11. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett.29(18), 2154–2156 (2004). [CrossRef] [PubMed]
  12. H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett.34(21), 3439–3441 (2009). [CrossRef] [PubMed]
  13. N. Vretenar, T. C. Newell, T. Carson, P. Peterson, T. Lucas, W. P. Latham, H. Bostanci, J. J. Lindauer, B. A. Saarloos, and D. P. Rini, “Cryogenic ceramic 277 watt Yb:YAG thin-disk laser,” Opt. Eng.51(1), 014201 (2012). [CrossRef]
  14. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010). [CrossRef]
  15. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett.37(12), 2175–2177 (2012). [CrossRef] [PubMed]
  16. J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi kJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser.244(1), 012010 (2010). [CrossRef]
  17. M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb3+:YAG laser amplifier for the HiLASE Project,” J. Opt. Soc. Am. B29(6), 1270–1276 (2012). [CrossRef]
  18. J. D. Foster and L. M. Osterink, “Index of refraction and expansion thermal coefficients of Nd:YAG,” Appl. Opt.7(12), 2428–2429 (1968). [CrossRef] [PubMed]
  19. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt.38(15), 3282–3284 (1999). [CrossRef] [PubMed]
  20. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005). [CrossRef]
  21. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005). [CrossRef]
  22. V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012). [CrossRef]
  23. T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol.12(12), 2089–2094 (2001). [CrossRef]
  24. H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007). [CrossRef]
  25. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007). [CrossRef]
  26. A. Iwamoto, R. Maekawa, and T. Mito, “Development of evaluation technique on thermal impedance between dissimilar solids,” Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference 49(204), 643–649 (2004).
  27. J. Callaway, “Model for lattice thermal conductivity at low temperatures,” Phys. Rev.113(4), 1046–1051 (1959). [CrossRef]
  28. H. Furuse, J. Kawanaka, N. Miyanaga, H. Chosrowjan, M. Fujita, K. Takeshita, and Y. Izawa, “Output characteristics of high power cryogenic Yb:YAG TRAM laser oscillator,” Opt. Express20(19), 21739–21748 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited