OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29568–29568

Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes

Pin Jern Ker, John P. R. David, and Chee Hing Tan  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29568-29568 (2012)
http://dx.doi.org/10.1364/OE.20.029568


View Full Text Article

Enhanced HTML    Acrobat PDF (862 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Measurement and analysis of the temperature dependence of avalanche gain and excess noise in InAs electron avalanche photodiodes (eAPDs) at 77 to 250 K are reported. The avalanche gain, initiated by pure electron injection, was found to reduce with decreasing temperature. However no significant change in the excess noise was measured as the temperature was varied. For avalanche gain > 3, the InAs APDs with 3.5 µm i-region show consistently low excess noise factors between 1.45 and 1.6 at temperatures of 77 to 250 K, confirming that the eAPD characteristics are exhibited in the measured range of electric field. As the dark current drops much more rapidly than the avalanche gain and the excess noise remains very low, our results confirmed that improved signal to noise ratio can be obtained in InAs eAPDs by reducing the operating temperature. The lack of hole impact ionization, as confirmed by the very low excess noise and the exponentially rising avalanche gain, suggests that hole impact ionization enhancement due to band “resonance” does not occur in InAs APDs at the reported temperatures.

© 2012 OSA

OCIS Codes
(040.1345) Detectors : Avalanche photodiodes (APDs)
(250.0040) Optoelectronics : Detectors

ToC Category:
Detectors

History
Original Manuscript: November 12, 2012
Revised Manuscript: December 7, 2012
Manuscript Accepted: December 7, 2012
Published: December 19, 2012

Citation
Pin Jern Ker, John P. R. David, and Chee Hing Tan, "Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes," Opt. Express 20, 29568-29568 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-28-29568


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. R. David and C. H. Tan, “Material considerations for avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron.14(4), 998–1009 (2008). [CrossRef]
  2. G. J. Rees and J. P. R. David, “Why small avalanche photodiodes are beautiful,” Proc. SPIE4999, 349–362 (2003). [CrossRef]
  3. R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron. Dev.13(1), 164–168 (1966). [CrossRef]
  4. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett.93, 111107 (2008).
  5. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett.21(13), 866–868 (2009). [CrossRef]
  6. J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater.35(6), 1166–1173 (2006). [CrossRef]
  7. A. R. J. Marshall, P. J. Ker, A. Krysa, J. P. R. David, and C. H. Tan, “High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit,” Opt. Express19(23), 23341–23349 (2011). [CrossRef] [PubMed]
  8. S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, “Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping,” Appl. Phys. Lett.101, 151124 (2012).
  9. P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron.47(8), 1123–1128 (2011). [CrossRef]
  10. A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77 K,” IEEE J. Quantum Electron.47(6), 858–864 (2011). [CrossRef]
  11. D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron. Dev.53(9), 2328–2334 (2006). [CrossRef]
  12. C. Groves, R. Ghin, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in GaAs,” IEEE Trans. Electron. Dev.50(10), 2027–2031 (2003). [CrossRef]
  13. L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Q. Yahong, and J. P. R. David, “Temperature dependence of avalanche breakdown in InP and InAlAs,” IEEE J. Quantum Electron.46(8), 1153–1157 (2010). [CrossRef]
  14. C. L. F. Ma, M. J. Deen, L. E. Tarof, and J. C. H. Yu, “Temperature dependence of breakdown voltages in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Trans. Electron. Dev.42(5), 810–818 (1995). [CrossRef]
  15. H. Kanbe, “Temperature dependence of multiplication noise in Silicon avalanche photodiodes,” Electron. Lett.14(17), 539–541 (1978). [CrossRef]
  16. J. Yu, L. E. Tarof, R. Bruce, D. G. Knight, K. Visvanatha, and T. Baird, “Noise performance of separate absorption, grading, charge and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett.6(5), 632–634 (1994). [CrossRef]
  17. Y. G. Xiao and M. J. Deen, “Temperature dependent studies of InP/InGaAs avalanche photodiodes based on time domain modeling,” IEEE Trans. Electron. Dev.48(4), 661–670 (2001). [CrossRef]
  18. X. G. Zheng, P. Yuan, X. Sun, G. S. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Temperature dependence of the ionization coefficients of AlxGa1-xAs,” IEEE J. Quantum Electron.36(10), 1168–1173 (2000). [CrossRef]
  19. M. P. Mikhailova, M. M. Smirnova, and S. V. Slobodchikov, “Carrier multiplication in InAs and InGaAs p-n junctions and their ionization coefficients,” Sov. Phys. Semicond.10, 509–513 (1976).
  20. P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev.10, 159–174 (2002).
  21. C. H. Grein and H. Ehrenreich, “Impact ionization enhancements in AlxGa1 - xSb avalanche photodiodes,” Appl. Phys. Lett.77(19), 3048–3050 (2000). [CrossRef]
  22. Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys.67(11), 7034–7039 (1990). [CrossRef]
  23. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys.89(11), 5815–5875 (2001). [CrossRef]
  24. A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE6740, 67400H (2007). [CrossRef]
  25. S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1 - xAs, and In1-xGaxAsyP1-y,” J. Appl. Phys.66(12), 6030–6040 (1989). [CrossRef]
  26. J. Bude and K. Hess, “Thresholds of impact ionization in semiconductors,” J. Appl. Phys.72(8), 3554–3561 (1992). [CrossRef]
  27. C. H. Tan, G. J. Rees, P. A. Houston, J. S. Ng, W. K. Ng, and J. P. R. David, “Temperature dependence of electron impact ionization in In0.53Ga0.47As,” Appl. Phys. Lett.84(13), 2322–2324 (2004). [CrossRef]
  28. J. R. Chelikowsky and M. L. Cohen, “Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors,” Phys. Rev. B14(2), 556–582 (1976). [CrossRef]
  29. P. J. Ker, A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Low noise high responsivity InAs electron avalanche photodiodes for infrared sensing,” Phys. Status Solidi9(2c), 310–313 (2012). [CrossRef]
  30. K. S. Lau, C. H. Tan, B. K. Ng, K. F. Li, R. C. Tozer, J. P. R. David, and G. J. Rees, “Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end,” Meas. Sci. Technol.17(7), 1941–1946 (2006). [CrossRef]
  31. V. G. Luppov, Frequency response of low frequency probes (Wilmington, MA: Janis Research Company 2012).
  32. S. A. Plimmer, J. P. R. David, and D. S. Ong, “The merits and limitations of local impact ionization theory,” IEEE Trans. Electron. Dev.47(5), 1080–1088 (2000). [CrossRef]
  33. B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev.37(9), 1976–1984 (1990). [CrossRef]
  34. A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev.57(10), 2631–2638 (2010). [CrossRef]
  35. D. S. Ong, K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, “A simple model to determine multiplication and noise in avalanche photodiodes,” J. Appl. Phys.83(6), 3426–3428 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited