OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29605–29612

Tunable THz notch filter with a single groove inside parallel-plate waveguides

Eui Su Lee and Tae-In Jeon  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29605-29612 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1795 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A single groove in a parallel-plate waveguide (PPWG) has been applied to a tunable terahertz (THz) notch filter with a transverse-electromagnetic (TEM) mode. When the air gap between the metal plates of the PPWG is controlled from 60 to 240 μm using a motor controlled translation stage or a piezo-actuator, the resonant frequency of the notch filter is changed from 1.75 up to 0.62 THz, respectively. Therefore, the measured tunable sensitivity of the notch filter increases to 6.28 GHz/μm. The measured resonant frequencies were found to be in good agreement with the calculation using an effective groove depth. Using a finite-difference time-domain (FDTD) simulation, we also demonstrate that the sensitivity of a THz microfluidic sensor can be increased via a small air gap, a narrow groove width, and a deep groove depth.

© 2012 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.7370) Optical devices : Waveguides
(260.5740) Physical optics : Resonance
(350.5500) Other areas of optics : Propagation
(040.2235) Detectors : Far infrared or terahertz
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: October 12, 2012
Revised Manuscript: December 13, 2012
Manuscript Accepted: December 13, 2012
Published: December 20, 2012

Eui Su Lee and Tae-In Jeon, "Tunable THz notch filter with a single groove inside parallel-plate waveguides," Opt. Express 20, 29605-29612 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett.85(22), 5173–5175 (2004). [CrossRef]
  2. A. L. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguides,” Appl. Phys. Lett.87(5), 051101 (2005). [CrossRef]
  3. J. Kitagawa, M. Kodama, S. Koya, Y. Nishifuji, D. Armand, and Y. Kadoya, “THz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands,” Opt. Express20(16), 17271–17280 (2012). [CrossRef] [PubMed]
  4. E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T.-I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express17(11), 9212–9218 (2009). [CrossRef] [PubMed]
  5. N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically Tunable Terahertz Notch Filters,” J. Infrared Milli. Terahz. Waves33(3), 327–332 (2012). [CrossRef]
  6. J.-Y. Lu, H.-Z. Chen, C.-H. Lai, H.-C. Chang, B. You, T.-A. Liu, and J.-L. Peng, “Application of metal-clad antiresonant reflecting hollow waveguides to tunable terahertz notch filter,” Opt. Express19(1), 162–167 (2011). [CrossRef] [PubMed]
  7. E. S. Lee, S.-G. Lee, C.-S. Kee, and T.-I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express19(16), 14852–14859 (2011). [CrossRef] [PubMed]
  8. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett.97(13), 131106 (2010). [CrossRef]
  9. V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett.36(8), 1452–1454 (2011). [CrossRef] [PubMed]
  10. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001). [CrossRef] [PubMed]
  11. S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Improvement of THz coupling using a tapered parallel-plate waveguide,” Opt. Express18(2), 1289–1295 (2010). [CrossRef] [PubMed]
  12. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009). [CrossRef] [PubMed]
  13. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett.95(17), 171113 (2009). [CrossRef]
  14. E. S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, and T.-I. Jeon, “Terahertz band gaps induced by metal grooves inside parallel-plate waveguides,” Opt. Express20(6), 6116–6123 (2012). [CrossRef] [PubMed]
  15. E. S. Lee, Y. B. Ji, and T.-I. Jeon, “Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides,” Appl. Phys. Lett.97(18), 181112 (2010). [CrossRef]
  16. J. P. Laib and D. M. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Milli. Terahz. Waves31(9), 1015–1021 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited