OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29620–29625

A modified SAG technique for the fabrication of DWDM DFB laser arrays with highly uniform wavelength spacings

Can Zhang, Song Liang, Hongliang Zhu, Baojun Wang, and Wei Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29620-29625 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (994 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A modified selective area growth (SAG) technique, in which the effective index of only the upper separate confinement heterostructure (SCH) layer are modulated to obtain different emission wavelengths, is reported for the fabrication of dense wavelength division multiplexing (DWDM) multi-wavelength laser arrays (MWLAs). InP based 1.5 μm distributed feedback (DFB) laser arrays with 0.8 nm, 0.42 nm, and 0.19 nm channel separations are demonstrated, all showing highly uniform wavelength spacings. The standard deviation of the distribution of the wavelength residues with respect to the corresponding linear fitting values is 0.0672nm, which is a lot smaller than those of the MWLAs fabricated by other techniques including electron beam lithography. These results indicate that our SAG technique which needs only a simple procedure is promising for the fabrication of low cost DWDM MWLAs.

© 2012 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(140.3290) Lasers and laser optics : Laser arrays
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: November 22, 2012
Revised Manuscript: December 7, 2012
Manuscript Accepted: December 10, 2012
Published: December 20, 2012

Can Zhang, Song Liang, Hongliang Zhu, Baojun Wang, and Wei Wang, "A modified SAG technique for the fabrication of DWDM DFB laser arrays with highly uniform wavelength spacings," Opt. Express 20, 29620-29625 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Zah, M. R. Amersfoort, B. N. Pathak, F. J. Favire, P. S. D. Lin, N. C. Andreadakis, A. W. Rajhel, R. Bhat, C. Caneau, M. A. Koza, and J. Gamelin, “Multiwavelength DFB Laser Arrays with Integrated Combiner and Optical Amplifier for WDM Optical Networks,” IEEE J. Sel. Top. Quantum Electron.3(2), 584–597 (1997). [CrossRef]
  2. T. Fujisawa, S. Kanazawa, K. Takahata, W. Kobayashi, T. Tadokoro, H. Ishii, and F. Kano, “1.3-μm, 4 × 25-Gbit/s, EADFB laser array module with large-output-power and low-driving-voltage for energy-efficient 100GbE transmitter,” Opt. Express20(1), 614–620 (2012). [CrossRef] [PubMed]
  3. S. Corzine, P. Evans, M. Fisher, J. Gheorma, M. Kato, V. Dominic, P. Samra, A. Nilsson, J. Rahn, I. Lyubomirsky, A. Dentai, P. Studenkov, M. Missey, D. Lambert, A. Spannagel, S. Murthy, E. Strzelecka, J. Pleumeekers, A. Chen, R. Schneider, R. Nagarajan, M. Ziari, J. Stewart, C. Joyner, F. Kish, and D. Welch, “Large-scale InP transmitter PICs for PM-DQPSK fiber transmission systems,” IEEE Photon. Technol. Lett.22(14), 1015–1017 (2010). [CrossRef]
  4. G. P. Li, T. Makino, A. Sarangan, and W. Huang, “A16-Wavelength Gain-Coupled DFB Laser Array with Fine Tunability,” IEEE Photon. Technol. Lett.8(1), 22–24 (1996). [CrossRef]
  5. M. G. Young, U. Koren, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Dragone, B. Tell, H. M. Presby, and G. Raybon, “A 16 x 1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators,” IEEE Photon. Technol. Lett.5(8), 908–910 (1993). [CrossRef]
  6. M. Aoki, M. Suzuki, and Y. Okuno, “Multi-wavelength DFB laser arrays grown by in-plane thickness control epitaxy,” in Proceedings of the 7th International Conference on Indium Phosphide and Related Materials, (IEEE 1995), pp. 53–56.
  7. G. Zimmermann, A. Ougazzaden, A. Gloukhian, E. V. K. Rao, D. Delprat, A. Ramdane, and A. Mircea, “Selective area MOVPE growth of InP, InGaAs and InGaAsP using TBAs and TBP at different growth conditions,” J. Cryst. Growth170(1-4), 645–649 (1997). [CrossRef]
  8. R. Tohmon, Y. Takahashi, and T. Kilcugawa, “Complex-coupled DFB lasers based on acurrent modulation concept”, in Proceedings of the 10th International Conference on Indium Phosphide and Related Materials, (IEEE 1998), pp. 725–728.
  9. S. L. Lee, I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, “Monolithically Integrated Multiwavelength Sampled Grating DBR Lasers for Dense WDM Applications,” IEEE J. Sel. Top. Quantum Electron.6(1), 197–206 (2000). [CrossRef]
  10. C. E. Zah, M. R. Amersfoort, B. Pathak, F. Favire, P. S. D. Lin, A. Rajhel, N. C. Andreadakis, R. Bhat, C. Caneau, and M. A. Koza, “Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifier,” IEEE Photon. Technol. Lett.8(7), 864–866 (1996). [CrossRef]
  11. T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol.14(6), 967–976 (1996). [CrossRef]
  12. Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise Wavelength Control for DFB Laser Diodes by Novel Corrugation Delineation Method,” IEEE Photon. Technol. Lett.9(3), 288–290 (1997). [CrossRef]
  13. T. Nakura and Y. Nakano, “LAPAREX-An automatic parameter extraction program for gain and index coupled distributed feedback semiconductor lasers, and its application to observation of changing coupling coefficient with current,” IEICE Trans. Electron.83(3), 488–495 (2000).
  14. S. W. Park, C. K. Moon, J. C. Han, and J. I. Song, “1.55-μm DFB Lasers Utilizing an Automatically Buried Absorptive InAsP Layer Having a High Single-Mode Yield,” IEEE Photon. Technol. Lett.16(6), 1426–1428 (2004). [CrossRef]
  15. F. M. Lee, C. L. Tsai, C. W. Hu, F. Y. Cheng, M. C. Wu, and C. C. Lin, “High-Reliable and High-Speed 1.3 μm Complex-Coupled Distributed Feedback Buried-Heterostructure Laser Diodes With Fe-Doped InGaAsP/InP Hybrid Grating Layers Grown by MOCVD,” IEEE Trans. Electron. Dev.55(2), 540–546 (2008). [CrossRef]
  16. A. Talneau, N. Bouadma, S. Slempkes, A. Ougazzaden, and S. Hansmann, “Accurate Wavelength Spacing from Absorption-Coupled DFB Laser Arrays,” IEEE Photon. Technol. Lett.9(10), 1316–1318 (1997). [CrossRef]
  17. S. Hansmann, K. Dahlhof, B. E. Kempf, R. Gobel, E. Kuphal, B. Hubner, H. Burkhard, A. Krost, K. Schatke, and D. Bimberg, “Properties of Loss-Coupled Distributed Feedback Laser Arrays for Wavelength Division Multiplexing Systems,” J. Lightwave Technol.15(7), 1191–1197 (1997). [CrossRef]
  18. H. Hillmer and B. Klepser, “Low-Cost Edge-Emitting DFB Laser Arrays for DWDM Communication Systems Implemented by Bent and Tilted Waveguides,” IEEE J. Quantum Electron.40(10), 1377–1383 (2004). [CrossRef]
  19. M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Post-Growth Fabrication of Multiple Wavelength DFB Laser Arrays With Precise Wavelength Spacing,” IEEE Photon. Technol. Lett.24(12), 1063–1065 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited