OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29751–29760

Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter

Hicham El Hamzaoui, Youcef Ouerdane, Laurent Bigot, Géraud Bouwmans, Bruno Capoen, Aziz Boukenter, Sylvain Girard, and Mohamed Bouazaoui  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29751-29760 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1306 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the fabrication and characterization of a photonic crystal fiber (PCF) having a sol-gel core doped with ionic copper. Optical measurements demonstrate that the ionic copper is preserved in the silica glass all along the preparation steps up to fiber drawing. The photoluminescence results clearly show that such an ionic copper-doped fiber constitutes a potential candidate for UV-C (200-280 nm) radiation dosimetry. Indeed, the Cu+-related visible photoluminescence of the fiber shows a linear response to 244 nm light excitation measured for an irradiation power up to 2.7 mW at least on the Cu-doped PCF core. Moreover, this response was found to be fully reversible within the measurement accuracy of this study ( ± 1%), underlying the remarkable stability of copper in the Cu+ oxidation state within the pure silica core prepared by a sol-gel route. This reversibility offers possibilities for the achievement of reusable real-time optical fiber UV-C dosimeters.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(160.6060) Materials : Solgel
(160.6990) Materials : Transition-metal-doped materials
(260.7190) Physical optics : Ultraviolet
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 21, 2012
Revised Manuscript: November 21, 2012
Manuscript Accepted: November 21, 2012
Published: December 20, 2012

Hicham El Hamzaoui, Youcef Ouerdane, Laurent Bigot, Géraud Bouwmans, Bruno Capoen, Aziz Boukenter, Sylvain Girard, and Mohamed Bouazaoui, "Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter," Opt. Express 20, 29751-29760 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Gómez, I. Urra, R. Valiente, and F. Rodríguez, “Spectroscopic study of Cu2+/Cu+ doubly doped and highly transmitting glasses for solar spectral transformation,” Sol. Energy Mater. Sol. Cells95(8), 2018–2022 (2011). [CrossRef]
  2. O. B. Miled, C. Sanchez, and J. Livage, “Spectroscopic studies and evanescent optical fibre wave sensing of Cu2+ based on activated mesostructured silica matrix,” J. Mater. Sci.40(17), 4523–4530 (2005). [CrossRef]
  3. N. S. Dhoble, S. P. Pupalwar, S. J. Dhoble, A. K. Upadhyay, and R. S. Kher, “Lyoluminescence and mechanoluminescence of Cu+ activated LiKSO4 phosphors for radiation dosimetry,” Radiat. Meas.46(12), 1890–1893 (2011). [CrossRef]
  4. B. L. Justus, P. Falkenstein, A. L. Huston, M. C. Plazas, H. Ning, and R. W. Miller, “Gated fiber-optic-coupled detector for in vivo real-time radiation dosimetry,” Appl. Opt.43(8), 1663–1668 (2004). [CrossRef] [PubMed]
  5. S. Gomez, I. Urra, R. Valiente, and F. Rodriguez, “Spectroscopic study of Cu2+ and Cu+ ions in high-transmission glass. Electronic structure and Cu2+/Cu+ concentrations,” J. Phys. Condens. Matter22(29), 295505 (2010). [CrossRef] [PubMed]
  6. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992). [CrossRef]
  7. A. Michnik, K. Michalik, and Z. Drzazga, “Effect of UVC radiation on conformational restructuring of human serum albumin,” J. Photochem. Photobiol. B90(3), 170–178 (2008). [CrossRef] [PubMed]
  8. H. P. Leenhouts and K. H. Chadwick, Human Exposure to Ultraviolet Radiation: Risks and Regulations, Eds: W F Passchier and B F Bosnjakovic (Elsevier, 1987).
  9. C. E. Andersen, J. M. Edmund, and S. M. S. Damkjær, “Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations,” Radiat. Meas.45(3-6), 653–657 (2010). [CrossRef]
  10. G. V. M. Williams and S. G. Raymond, “Fiber-optic-coupled RbMgF3:Eu2+ for remote radiation dosimetry,” Radiat. Meas.46(10), 1099–1102 (2011). [CrossRef]
  11. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, 2003).
  12. H. El Hamzaoui, L. Courtheoux, V. Nguyen, E. Berrier, A. Favre, L. Bigot, M. Bouazaoui, and B. Capoen, “From porous silica xerogels to bulk optical glasses: The control of densification,” Mater. Chem. Phys.121(1-2), 83–88 (2010). [CrossRef]
  13. H. El Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a Sol-gel polymeric route,” Opt. Mater. Express1(2), 234–242 (2011). [CrossRef]
  14. P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006). [CrossRef]
  15. Y. Fujimoto and M. Nakatsuka, “Spectroscopic properties and quantum yield of Cu-doped SiO2 glass,” J. Lumin.75(3), 213–219 (1997). [CrossRef]
  16. Q. Zhang, G. Chen, G. Dong, G. Zhang, X. Liu, J. Qiu, Q. Zhou, Q. Chen, and D. Chen, “The reduction of Cu2+ to Cu+ and optical properties of Cu+ ions in Cu-doped and Cu/Al-codoped high silica glasses sintered in an air atmosphere,” Chem. Phys. Lett.482(4-6), 228–233 (2009). [CrossRef]
  17. E. Borsella, A. Dal Vecchio, M. A. Garcìa, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, “Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study,” J. Appl. Phys.91(1), 90–98 (2002). [CrossRef]
  18. A. Lin, B. H. Kim, D. S. Moon, Y. Chung, and W.-T. Han, “Cu2+-doped germano-silicate glass fiber with high resonant nonlinearity,” Opt. Express15(7), 3665–3672 (2007). [CrossRef] [PubMed]
  19. J. Kaufmann and C. Rüssel, “Thermodynamics of the Cu+/Cu2+-redox equilibrium in alumosilicate melts,” J. Non-Cryst. Solids356(33-34), 1615–1619 (2010). [CrossRef]
  20. Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids271(3), 218–223 (2000). [CrossRef]
  21. S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of non bridging oxygen hole center in high-purity silica glass,” J. Appl. Phys.68, 1212–1217 (1990).
  22. Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, “Characteristic red photoluminescence band in oxygen-deficient silica glass,” J. Appl. Phys.86(1), 370–373 (1999). [CrossRef]
  23. Y. Hibino and H. Hanafusa, “Defect structure and formation mechanism of drawing-induced absorption at 630 nm in silica optical fibers,” J. Appl. Phys.60(5), 1797–1801 (1986). [CrossRef]
  24. E. J. Friebele, G. H. Sigel, and D. L. Griscom, “Drawinginduced defect centers in a fused silica core fiber,” Appl. Phys. Lett.28(9), 516–518 (1976). [CrossRef]
  25. G. H. Sigel and M. G. Marrone, “Photoluminescence in as-drawn and irradiated silica optical fibers: an assessment of the role of non-bridging oxygen defect centers,” J. Non-Cryst. Solids45(2), 235–247 (1981). [CrossRef]
  26. P. Kaiser, “Drawing-induced coloration in vitreous silica fibers,” J. Opt. Soc. Am.64(4), 475–481 (1974). [CrossRef]
  27. J.-W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids239(1-3), 57–65 (1998). [CrossRef]
  28. M. A. García, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, and R. Polloni, “Luminescence time decay from Cu+ ions in Sol-gel silica coatings,” J. Lumin.93(3), 253–259 (2001). [CrossRef]
  29. M. Neff, V. Romano, and W. Lüthy, “Metal-doped fibres for broadband emission: Fabrication with granulated oxides,” Opt. Mater.31(2), 247–251 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited