OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 28 — Dec. 31, 2012
  • pp: 29798–29806

Frequency stability of a dual-mode whispering gallery mode optical reference cavity

L. M. Baumgartel, R. J. Thompson, and N. Yu  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29798-29806 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1665 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an investigation of laser frequency stabilization using a whispering gallery mode resonator that is temperature stabilized by a dual-mode technique. This dual-mode technique has yielded mode volume temperature instabilities at the nK level, suggesting that high frequency stability may also be reached. Here, we experimentally and theoretically investigate the dynamics of such a system and the important factors affecting the achievable frequency stability. We calculate that the dual-mode technique can reduce the effective fractional temperature coefficient of the reference system to 3.6×10−8 K−1 within the temperature feedback bandwidth. We demonstrate a 1560 nm laser stabilized to 1.3×10−12 at 1 s and 1.1×10−10 at 1000 s, corresponding to a long-term drift of 21 kHz/hr.

© 2012 OSA

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(230.5750) Optical devices : Resonators
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 2, 2012
Revised Manuscript: December 10, 2012
Manuscript Accepted: December 16, 2012
Published: December 21, 2012

L. M. Baumgartel, R. J. Thompson, and N. Yu, "Frequency stability of a dual-mode whispering gallery mode optical reference cavity," Opt. Express 20, 29798-29806 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74, 063806 (2006). [CrossRef]
  2. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express15, 6768–6773 (2007). [CrossRef] [PubMed]
  3. B. Sprenger, H. G. L. Schwefel, Z. H. Lu, S. Svitlov, and L. J. Wang, “CaF2 whispering-gallery-mode-resonator stabilized-narrow-linewidth laser,” Opt. Lett.35, 2870–2872 (2010). [CrossRef] [PubMed]
  4. W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett.35, 2822–2824 (2010). [CrossRef] [PubMed]
  5. J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A84, 011804 (2011). [CrossRef]
  6. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. stabilization,” J. Opt. Soc. Am. B24, 2988–2997 (2007). [CrossRef]
  7. A. Chijioke, Q.-F. Chen, A. Y. Nevsky, and S. Schiller, “Thermal noise of whispering-gallery resonators,” Phys. Rev. A85, 053814 (2012). [CrossRef]
  8. M. L. Gorodetsky and I. S. Grudinin, “Fundamental thermal fluctuations in microspheres,” J. Opt. Soc. Am. B21, 697–705 (2004). [CrossRef]
  9. D. V. Strekalov, R. J. Thompson, L. M. Baumgartel, I. S. Grudinin, and N. Yu, “Temperature measurement and stabilization in a birefringent whispering gallery mode resonator,” Opt. Express19, 14495–14501 (2011). [CrossRef] [PubMed]
  10. L. Baumgartel, R. Thompson, D. Strekalov, I. Grudinin, and N. Yu, “Dual mode frequency stabilization of a whispering gallery mode optical reference cavity,” in “CLEO: Science and Innovations,” (Optical Society of America, 2012), p. CTh3A.6.
  11. I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J. Kippenberg, and T. W. Hänsch, “Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator,” Opt. Express20, 19185–19193 (2012). [CrossRef] [PubMed]
  12. P. Del’Haye, S. Papp, and S. Diddams, “An all-optical resonator stabilization scheme with laser machined SiO2 microresonators,” in “CLEO: Science and Innovations,” (Optical Society of America, 2012), p. CTh3A.7.
  13. V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett.24, 723–725 (1999). [CrossRef]
  14. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B.31, 97–105 (1983). [CrossRef]
  15. E. Schmidt, Thermodynamics: Principles and Applications to Engineering (Dover Publications, 1966).
  16. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12, 4742–4750 (2004). [CrossRef] [PubMed]
  17. I. S. Grudinin and N. Yu, “Finite-element modeling of coupled optical microdisk resonators for displacement sensing,” J. Opt. Soc. Am. B29, 3010–3014 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited