OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 1953–1962

Motion analysis of optically trapped particles and cells using 2D Fourier analysis

Martin Verner Kristensen, Peter Ahrendt, Thue Bjerring Lindballe, Otto Højager Attermann Nielsen, Anton P. Kylling, Henrik Karstoft, Alberto Imparato, Leticia Hosta-Rigau, Brigitte Stadler, Henrik Stapelfeldt, and Søren Rud Keiding  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 1953-1962 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1686 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Motion analysis of optically trapped objects is demonstrated using a simple 2D Fourier transform technique. The displacements of trapped objects are determined directly from the phase shift between the Fourier transform of subsequent images. Using end- and side-view imaging, the stiffness of the trap is determined in three dimensions. The Fourier transform method is simple to implement and applicable in cases where the trapped object changes shape or where the lighting conditions change. This is illustrated by tracking a fluorescent particle and a myoblast cell, with subsequent determination of diffusion coefficients and the trapping forces.

© 2012 OSA

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.0100) Image processing : Image processing
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: November 23, 2011
Revised Manuscript: January 2, 2012
Manuscript Accepted: January 2, 2012
Published: January 13, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Martin Verner Kristensen, Peter Ahrendt, Thue Bjerring Lindballe, Otto Højager Attermann Nielsen, Anton P. Kylling, Henrik Karstoft, Alberto Imparato, Leticia Hosta-Rigau, Brigitte Stadler, Henrik Stapelfeldt, and Søren Rud Keiding, "Motion analysis of optically trapped particles and cells using 2D Fourier analysis," Opt. Express 20, 1953-1962 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Glückstad, “Optical manipulation sculpting the object,” Nat. Photonics 5(1), 7–8 (2011). [CrossRef]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  3. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18(13), 13563–13573 (2010). [CrossRef] [PubMed]
  4. J. Fung, K. E. Martin, R. W. Perry, D. M. Kaz, R. McGorty, and V. N. Manoharan, “Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy,” Opt. Express 19(9), 8051–8065 (2011). [CrossRef] [PubMed]
  5. O. Otto, F. Czerwinski, J. L. Gornall, G. Stober, L. B. Oddershede, R. Seidel, and U. F. Keyser, “Real-time particle tracking at 10,000 fps using optical fiber illumination,” Opt. Express 18(22), 22722–22733 (2010). [CrossRef] [PubMed]
  6. R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express 18(11), 11785–11790 (2010). [CrossRef] [PubMed]
  7. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001). [CrossRef] [PubMed]
  8. B. S. Reddy and B. N. Chatterji, “An FFT-based technique for translation, rotation, and scale-invariant image registration,” IEEE Trans. Image Process. 5(8), 1266–1271 (1996). [CrossRef] [PubMed]
  9. J. P. Staforelli, E. Vera, J. M. Brito, P. Solano, S. Torres, and C. Saavedra, “Superresolution imaging in optical tweezers using high-speed cameras,” Opt. Express 18(4), 3322–3331 (2010). [CrossRef] [PubMed]
  10. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008). [CrossRef] [PubMed]
  11. C. D. Kuglin and D. C. Hines, “The phase correlation image alignment method,” Proc. Int. Conf. Cybernetics Society 163–5 (1975).
  12. D. Palima and J. Glückstad, “Generalised phase contrast: microscopy, manipulation and more,” Contemp. Phys. 51(3), 249–265 (2010). [CrossRef]
  13. T. B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Glückstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps,” J. Eur. Opt. Soc-Rapid. 6, 110576 (2011).
  14. P. J. Rodrigo, I. R. Perch-Nielsen, C. A. Alonzo, and J. Glückstad, “GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator,” Opt. Express 14(26), 13107–13112 (2006). [CrossRef] [PubMed]
  15. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004). [CrossRef] [PubMed]
  16. H. S. Stone, M. T. Orchard, E. C. Chang, and S. A. Martucci, ““A fast direct Fourier-based algorithm for subpixel registration of images,” IEEE T Geosci. Remote 39(10), 2235–2243 (2001). [CrossRef]
  17. M. Balci and H. Foroosh, “Subpixel estimation of shifts directly in the Fourier domain,” IEEE Trans. Image Process. 15(7), 1965–1972 (2006). [CrossRef] [PubMed]
  18. T. J. Grassman, M. K. Knowles, and A. H. Marcus, “Structure and dynamics of fluorescently labeled complex fluids by fourier imaging correlation spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(66 Pt B), 8245–8257 (2000). [CrossRef] [PubMed]
  19. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004). [CrossRef]
  20. S. Pasche, S. M. De Paul, J. Voros, N. D. Spencer, and M. Textor, “Poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium oxide surfaces: A quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLS,” Langmuir 19(22), 9216–9225 (2003). [CrossRef]
  21. G. M. Cortelazzo, L. Lucchese, and C. M. Monti, “Frequency domain analysis of general planar rigid motion with finite duration,” J. Opt. Soc. Am. A 16(6), 1238–1253 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited