OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 1969–1974

Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing

Yingying Ren, Ningning Dong, John Macdonald, Feng Chen, Huaijin Zhang, and Ajoy K. Kar  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 1969-1974 (2012)
http://dx.doi.org/10.1364/OE.20.001969


View Full Text Article

Enhanced HTML    Acrobat PDF (1659 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Buried channel waveguides in Nd:LuVO4 were fabricated by femtosecond laser writing with the double-line technique. The photoluminescence properties of the bulk materials were found to be well preserved within the waveguide core region. Continuous-wave laser oscillation at 1066.4 nm was observed from the waveguide under ~809 nm optical excitation, with the absorbed pump power at threshold and laser slope efficiency of 98 mW and 14%, respectively.

© 2012 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(230.7380) Optical devices : Waveguides, channeled
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 28, 2011
Revised Manuscript: January 8, 2012
Manuscript Accepted: January 9, 2012
Published: January 13, 2012

Citation
Yingying Ren, Ningning Dong, John Macdonald, Feng Chen, Huaijin Zhang, and Ajoy K. Kar, "Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing," Opt. Express 20, 1969-1974 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-1969


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Agnesi, A. Guandalini, and G. Reali, “Efficient 671-nm pump source by intracavity doubling of a diode-pumped Nd:YVO4 laser,” J. Opt. Soc. Am. B19(5), 1078–1082 (2002). [CrossRef]
  2. H. Ogilvy, M. Withford, P. Dekker, and J. A. Piper, “Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342nm,” Opt. Express11(19), 2411–2415 (2003). [CrossRef] [PubMed]
  3. C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, “Continuous wave diode umped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm,” Opt. Commun.205, 361–365 (2002).
  4. H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, M. Jiang, and Y. T. Chow, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B19(1), 18–27 (2002). [CrossRef]
  5. C. Maunier, J. L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B19(8), 1794–1800 (2002). [CrossRef]
  6. T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys.49(11), 5517–5522 (1978). [CrossRef]
  7. T. Jensen, V. G. Ostroumov, J.-P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic Characterization and Laser Performance of Diode-Laser-Pumped Nd:GdVO4,” Appl. Phys. B58(5), 373–379 (1994). [CrossRef]
  8. S. R. Zhao, H. J. Zhang, J. Y. Wang, H. K. Kong, X. F. Cheng, J. H. Liu, J. Li, Y. T. Lin, X. B. Hu, X. G. Xu, X. Q. Wang, Z. S. Shao, and M. H. Jiang, “Growth and characterization of the new laser crystal Nd:LuVO4,” Opt. Mater.26(3), 319–325 (2004). [CrossRef]
  9. X. Yu, C. L. Li, G. C. Sun, B. Z. Li, X. Y. Chen, M. Zhao, J. B. Wang, X. H. Zhang, and G. Y. Jin, “Continuous-Wave Dual-Wavelength Operation of a Diode-End-Pumped Nd:LuVO4 Laser,” Laser Phys.21(6), 1039–1041 (2011). [CrossRef]
  10. C. Y. Zhang, L. Zhang, Z. Y. Wei, C. Zhang, Y. B. Long, Z. G. Zhang, H. Zhang, and J. Wang, “Diode-pumped continuous-wave Nd:LuVO4 laser operating at 916 nm,” Opt. Lett.31(10), 1435–1437 (2006). [CrossRef] [PubMed]
  11. B. Liu, Y. L. Li, and H. L. Jiang, “Nd:LuVO4 as a true three-level laser,” Laser Phys. Lett.8(8), 575–578 (2011). [CrossRef]
  12. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  13. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B67(2), 131–150 (1998). [CrossRef]
  14. C. L. Jia, X. L. Wang, K. M. Wang, and H. J. Zhang, “Characterization of optical waveguide in Nd:LuVO4 crystals by triple-energy oxygen ion implantation,” Physica B403(4), 679–683 (2008). [CrossRef]
  15. H. X. Li, J. Y. Wang, H. J. Zhang, G. W. Yua, X. X. Wang, L. Fang, M. R. Shen, Z. Y. Ning, Q. W. Tang, S. L. Li, X. L. Wang, and K. M. Wang, “Structural and optical properties of Nd:LuVO4 waveguides grown on sapphire substrates by pulsed laser deposition,” J. Cryst. Growth277(1-4), 269–273 (2005). [CrossRef]
  16. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106(5), 051101 (2009). [CrossRef]
  17. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett.97(3), 031119 (2010). [CrossRef]
  18. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010). [CrossRef] [PubMed]
  19. Y. Tan, Y. Jia, F. Chen, J. R. Vázquez de Aldana, and D. Jaque, “Simultaneous dual-wavelength lasers at 1064 and 1342 nm in femtosecond-laser-written Nd:YVO4 channel waveguides,” J. Opt. Soc. Am. B28(7), 1607–1610 (2011). [CrossRef]
  20. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009). [CrossRef]
  21. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100(1), 131–135 (2010). [CrossRef]
  22. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express19(18), 17820–17833 (2011). [CrossRef] [PubMed]
  23. A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011). [CrossRef]
  24. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009). [CrossRef]
  25. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008). [CrossRef]
  26. N. Dong, Y. Yao, F. Chen, and J. R. Vazquez de Aldana, “Channel waveguides preserving luminescence features in Nd3+:Y2O3 ceramics produced by ultrafast laser inscription,” Phys. Status Solidi5, 184–186 (2011).
  27. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett.90(13), 131102 (2007). [CrossRef]
  28. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express16(24), 20029–20037 (2008). [CrossRef] [PubMed]
  29. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011). [CrossRef] [PubMed]
  30. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19(9), 7929–7936 (2011). [CrossRef] [PubMed]
  31. W. Watanabe, S. Sowa, and K. Itoh, “Waveguide writing in bulk PMMA by femtosecond laser pulses,” Proc. SPIE6108, 61080R, 61080R-6 (2006). [CrossRef]
  32. C. Zhang, N. N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. M. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express19(13), 12503–12508 (2011). [CrossRef] [PubMed]
  33. Rsoft Design Group, Computer software BEAMPROP ( http://www.rsoftdesign.com ).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited