OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2004–2014

Wave-guided optical waveguides

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2004-2014 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1361 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work primarily aims to fabricate and use two photon polymerization (2PP) microstructures capable of being optically manipulated into any arbitrary orientation. We have integrated optical waveguides into the structures and therefore have freestanding waveguides, which can be positioned anywhere in the sample at any orientation using optical traps. One of the key aspects to the work is the change in direction of the incident plane wave, and the marked increase in the numerical aperture demonstrated. Hence, the optically steered waveguide can tap from a relatively broader beam and then generate a more tightly confined light at its tip. The paper contains both simulation, related to the propagation of light through the waveguide, and experimental demonstrations using our BioPhotonics Workstation. In a broader context, this work shows that optically trapped microfabricated structures can potentially help bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the subwavelength domain.

© 2012 OSA

OCIS Codes
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: November 21, 2011
Revised Manuscript: January 2, 2012
Manuscript Accepted: January 4, 2012
Published: January 13, 2012

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, "Wave-guided optical waveguides," Opt. Express 20, 2004-2014 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  3. H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, “Multibeam laser manipulation and fixation of microparticles,” Appl. Phys. Lett.60(3), 310–312 (1992). [CrossRef]
  4. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett.16(19), 1463–1465 (1991). [CrossRef] [PubMed]
  5. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998). [CrossRef]
  6. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett.27(4), 267–269 (2002). [CrossRef] [PubMed]
  7. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett.18(21), 1867–1869 (1993). [CrossRef] [PubMed]
  8. F. Merenda, J. Rohner, J. M. Fournier, and R. P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express15(10), 6075–6086 (2007). [CrossRef] [PubMed]
  9. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010). [CrossRef]
  10. A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech.44(5), 378–386 (1999). [CrossRef] [PubMed]
  11. A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett.30(4), 202–204 (1977). [CrossRef]
  12. S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Dynamic axial stabilization of counter-propagating beam-traps with feedback control,” Opt. Express18(17), 18217–18222 (2010). [CrossRef] [PubMed]
  13. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature368(6467), 113–119 (1994). [CrossRef] [PubMed]
  14. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods5(6), 491–505 (2008). [CrossRef] [PubMed]
  15. A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt.16(5), 051302 (2011). [CrossRef] [PubMed]
  16. F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express18(2), 551–559 (2010). [CrossRef] [PubMed]
  17. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009). [CrossRef]
  18. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007). [CrossRef] [PubMed]
  19. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater.5(2), 97–101 (2006). [CrossRef] [PubMed]
  20. J. Plewa, E. Tanner, D. Mueth, and D. Grier, “Processing carbon nanotubes with holographic optical tweezers,” Opt. Express12(9), 1978–1981 (2004). [CrossRef] [PubMed]
  21. J. L. Hernández-Pozos, W. M. Lee, L. I. Vera-Robles, A. Campero, and K. Dholakia, “Controlled three-dimensional manipulation of vanadium oxide nanotubes with optical tweezers,” Appl. Phys. Lett.93(24), 243107 (2008). [CrossRef]
  22. L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys.11(2), 023012 (2009). [CrossRef]
  23. D. M. Carberry, S. H. Simpson, J. A. Grieve, Y. Wang, H. Schäfer, M. Steinhart, R. Bowman, G. M. Gibson, M. J. Padgett, S. Hanna, and M. J. Miles, “Calibration of optically trapped nanotools,” Nanotechnology21(17), 175501 (2010). [CrossRef] [PubMed]
  24. D. B. Phillips, J. A. Grieve, S. N. Olof, S. J. Kocher, R. Bowman, M. J. Padgett, M. J. Miles, and D. M. Carberry, “Surface imaging using holographic optical tweezers,” Nanotechnology22(28), 285503 (2011). [CrossRef] [PubMed]
  25. M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,” New J. Phys.12(11), 113056 (2010). [CrossRef]
  26. J. Glückstad, “Manipulating microtools with nanofeatures using light in 3d real-time,” Presented at the iNANO Seminar, Aarhus University, Denmark, 2 February, 2007.
  27. P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. R. Perch-Nielsen, and J. Glückstad, “Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps,” Opt. Express13(18), 6899–6904 (2005). [CrossRef] [PubMed]
  28. P. J. Rodrigo, L. Kelemen, C. A. Alonzo, I. R. Perch-Nielsen, J. S. Dam, P. Ormos, and J. Glückstad, “2D optical manipulation and assembly of shape-complementary planar microstructures,” Opt. Express15(14), 9009–9014 (2007). [CrossRef] [PubMed]
  29. P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Opt. Express17(8), 6578–6583 (2009). [CrossRef] [PubMed]
  30. D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007). [CrossRef]
  31. J. Glückstad, “Optical manipulation: Sculpting the object,” Nat. Photonics5(1), 7–8 (2011). [CrossRef]
  32. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  33. L. Tong, R. Gattass, I. Maxwell, J. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun.259(2), 626–630 (2006). [CrossRef]
  34. A. Levskaya, O. D. Weiner, W. A. Lim, and C. A. Voigt, “Spatiotemporal control of cell signalling using a light-switchable protein interaction,” Nature461(7266), 997–1001 (2009). [CrossRef] [PubMed]
  35. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag.14(3), 302–307 (1966). [CrossRef]
  36. A. G. Van Engen, S. A. Diddams, and T. S. Clement, “Dispersion measurements of water with white-light interferometry,” Appl. Opt.37(24), 5679–5686 (1998). [CrossRef] [PubMed]
  37. T. A. Anhøj, “Fabrication of High Aspect Ratio SU-8 Structures for Integrated Spectrometers,” doctoral dissertation, Technical University of Denmark, Denmark (2007).
  38. G. P. Agrawal, Lightwave Technology: Components and Devices (Wiley, 2004), pp. 18–19.
  39. L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor,” Appl. Opt.45(12), 2777–2780 (2006). [CrossRef] [PubMed]
  40. H. U. Ulriksen, J. Thøgersen, S. Keiding, I. Perch-Nielsen, J. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rap. Publ.3, 080341–080345 (2008).
  41. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol.3(7), 413–417 (2008). [CrossRef] [PubMed]
  42. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010). [CrossRef]
  43. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  44. P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, “Nano-imaging through tip-enhanced Raman spectroscopy: Stepping beyond the classical limits,” Laser Photonics. Rev.4(4), 548–561 (2010). [CrossRef]
  45. D. O’Carroll, I. Lieberwirth, and G. Redmond, “Microcavity effects and optically pumped lasing in single conjugated polymer nanowires,” Nat. Nanotechnol.2(3), 180–184 (2007). [CrossRef] [PubMed]
  46. F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010). [CrossRef] [PubMed]
  47. M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, “Nanoscale hydrodynamics: enhanced flow in carbon nanotubes,” Nature438(7064), 44 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (1168 KB)     
» Media 2: MOV (895 KB)     
» Media 3: MOV (108 KB)     
» Media 4: MOV (218 KB)     
» Media 5: MOV (189 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited