OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2136–2142

Efficient spectral shift and compression of femtosecond pulses by parametric amplification of chirped light

Michał Nejbauer and Czesław Radzewicz  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2136-2142 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1000 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for an efficient spectral shift and compression of pulses from a femtosecond laser system. The method enables generation of broadly tunable (615 – 985 nm) narrow bandwidth (≈10 cm−1) pulses from the femtosecond pulses at 1030 nm. It employs a direct parametric amplification – without spectral filtering – of highly chirped white light by a narrow bandwidth (<5 cm−1) 515 nm pump pulse. The system, when pumped with just 200 μJ of the fundamental femtosecond pulse energy, generates pulses with energies of 3-9 μJ and an excellent beam quality in the entire tuning range.

© 2012 OSA

OCIS Codes
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.5390) Ultrafast optics : Picosecond phenomena
(320.7090) Ultrafast optics : Ultrafast lasers
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Ultrafast Optics

Original Manuscript: November 7, 2011
Revised Manuscript: December 24, 2011
Manuscript Accepted: December 27, 2011
Published: January 17, 2012

Michał Nejbauer and Czesław Radzewicz, "Efficient spectral shift and compression of femtosecond pulses by parametric amplification of chirped light," Opt. Express 20, 2136-2142 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Ishibashi and H. Onishi, “A multiplex infrared-visible sum-frequency spectrometer with wavelength tunability of the visible probe,” Appl. Phys. Lett.81(7), 1338–1340 (2002). [CrossRef]
  2. R. R. Frontiera and R. A. Mathies, “Femtosecond Stimulated Raman Spectroscopy,” Laser Photonics Rev.5(1), 102–113 (2011). [CrossRef]
  3. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys.125(4), 044502 (2006). [CrossRef] [PubMed]
  4. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett.35(14), 2430–2432 (2010). [CrossRef] [PubMed]
  5. G. M. Greetham, P. Burgos, Q. Cao, I. P. Clark, P. S. Codd, R. C. Farrow, M. W. George, M. Kogimtzis, P. Matousek, A. W. Parker, M. R. Pollard, D. A. Robinson, Z.-J. Xin, and M. Towrie, “ULTRA: A Unique Instrument for Time-Resolved Spectroscopy,” Appl. Spectrosc.64(12), 1311–1319 (2010). [CrossRef] [PubMed]
  6. S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett.89(12), 121124 (2006). [CrossRef]
  7. A. Lakshmanna, B. Mallick, and S. Umapathy, “Ultrafast Raman loss spectroscopy: a new approach to vibrational structure determination,” Curr. Sci.97(2), 210–217 (2009).
  8. M. A. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. M. Pigozzo, C. Manzoni, F. Baronio, A. D. Capobianco, and G. Cerullo, “Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals,” Opt. Express15(14), 8884–8891 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8884 . [CrossRef] [PubMed]
  9. M. Marangoni, D. Brida, M. Conforti, A. D. Capobianco, C. Manzoni, F. Baronio, G. F. Nalesso, C. De Angelis, R. Ramponi, and G. Cerullo, “Synthesis of picosecond pulses by spectral compression and shaping of femtosecond pulses in engineered quadratic nonlinear media,” Opt. Lett.34(3), 241–243 (2009). [CrossRef] [PubMed]
  10. E. Pontecorvo, S. M. Kapetanaki, M. Badioli, D. Brida, M. Marangoni, G. Cerullo, and T. Scopigno, “Femtosecond stimulated Raman spectrometer in the 320-520nm range,” Opt. Express19(2), 1107–1112 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1107 . [CrossRef] [PubMed]
  11. F. Raoult, A. C. L. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. Lett.23(14), 1117–1119 (1998). [CrossRef] [PubMed]
  12. S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated Raman spectrograph for the near ultraviolet,” Appl. Phys. B85(4), 557–564 (2006). [CrossRef]
  13. G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral narrowing and temporal expanding of femtosecond pulses by use of quadratic nonlinear processes,” IEEE J. Sel. Top. Quantum Electron.10(1), 174–180 (2004). [CrossRef]
  14. G. Veitas and R. Danielius, “Generation of narrow-bandwidth tunable picosecond pulses by difference-frequency mixing of stretched pulses,” J. Opt. Soc. Am. B16(9), 1561–1565 (1999). [CrossRef]
  15. H. Luo, L. Qian, P. Yuan, and H. Zhu, “Generation of tunable narrowband pulses initiating from a femtosecond optical parametric amplifier,” Opt. Express14(22), 10631–10635 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10631 . [CrossRef] [PubMed]
  16. D. T. Co, J. V. Lockard, D. W. McCamant, and M. R. Wasielewski, “Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump,” Appl. Opt.49(10), 1880–1885 (2010). [CrossRef] [PubMed]
  17. S. A. Kovalenko, A. L. Dobryakov, and N. P. Ernsting, “An efficient setup for femtosecond stimulated Raman spectroscopy,” Rev. Sci. Instrum.82(6), 063102 (2011). [CrossRef] [PubMed]
  18. D. H. Auston, “Nonlinear spectroscopy of picosecond pulses,” Opt. Commun.3(4), 272–276 (1971). [CrossRef]
  19. C. Radzewicz, P. Wasylczyk, and J. S. Krasiński, “A Poor Man’s FROG,” Opt. Commun.186(4-6), 329–333 (2000). [CrossRef]
  20. O. Martinez, “3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron.23(1), 59–64 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited