OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2143–2148

Optical characteristics of YVO4:Eu3+ phosphor in close proximity to Ag nanofilm: emitting layer for mirror-type displays

Cheol Jang, Seong Min Lee, and Kyung Cheol Choi  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2143-2148 (2012)
http://dx.doi.org/10.1364/OE.20.002143


View Full Text Article

Enhanced HTML    Acrobat PDF (872 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the optical characteristics of YVO4:Eu3+ phosphor in close proximity to Ag nanofilm to create a highly efficient emitting layer in mirror-type self-emissive displays. The propagating surface plasmon mode induced between the dielectric layer (MgO) and the Ag nanofilm activates the electric dipole transition of Eu3+ ions. The transmittance of a 100 nm-thick Ag nanofilm is zero in the visible wavelength range, making this nanofilm a good reflector in the visible wavelength range and capable of fulfilling a mirror function. The emission of an YVO4:Eu3+ phosphor layer with a 100 nm-thick Ag nanofilm was enhanced to the point that it was eight times higher than that of a reference sample without Ag nanofilm. Therefore, the present work shows potential for application to mirror-type displays with high luminous efficacy.

© 2012 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 31, 2011
Revised Manuscript: January 8, 2012
Manuscript Accepted: January 10, 2012
Published: January 17, 2012

Citation
Cheol Jang, Seong Min Lee, and Kyung Cheol Choi, "Optical characteristics of YVO4:Eu3+ phosphor in close proximity to Ag nanofilm: emitting layer for mirror-type displays," Opt. Express 20, 2143-2148 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2143


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Gu, Z. Shen, P. E. Burrows, and S. R. Forrest, “Transparent flexible organic light‐emitting devices,” Adv. Mater. (Deerfield Beach Fla.)9(9), 725–728 (1997). [CrossRef]
  2. P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, and T. Riedl, “Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes,” Adv. Mater. (Deerfield Beach Fla.)18(6), 738–741 (2006). [CrossRef]
  3. J. F. Wager, “Applied physics. Transparent electronics,” Science300(5623), 1245–1246 (2003). [CrossRef] [PubMed]
  4. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature428(6986), 911–918 (2004). [CrossRef] [PubMed]
  5. G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,” Opt. Lett.22(3), 172–174 (1997). [CrossRef] [PubMed]
  6. Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, “Electronic paper: Flexible active-matrix electronic ink display,” Nature423(6936), 136 (2003). [CrossRef] [PubMed]
  7. S.-M. Lee, S. H. Oh, and K. C. Choi, “Highly Transparent SU-8 Photoresist Barrier Rib for a Transparent AC Plasma Display Panel,” IEEE/OSA Journal of Display Technology7(1), 40–43 (2011). [CrossRef]
  8. K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc.15(5), 643–654 (2005). [CrossRef] [PubMed]
  9. N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express17(13), 10767–10772 (2009). [CrossRef] [PubMed]
  10. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi2(7), 2841–2844 (2005). [CrossRef]
  11. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  12. S. M. Lee, K. C. Choi, D. H. Kim, and D. Y. Jeon, “Localized surface plasmon enhanced cathodoluminescence from Eu3+-doped phosphor near the nanoscaled silver particles,” Opt. Express19(14), 13209–13217 (2011). [CrossRef] [PubMed]
  13. S. M. Lee and K. C. Choi, “Enhanced emission from BaMgAl10O17:Eu2+ by localized surface plasmon resonance of silver particles,” Opt. Express18(12), 12144–12152 (2010). [CrossRef] [PubMed]
  14. A. K. Levine and F. C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett.5(6), 118 (1964). [CrossRef]
  15. G. Blasse, A. Bril, and W. C. Nieuwpoort, “On the Eu3+ fluorescence in mixed metal oxides: Part I-The crystal structure sensitivity of thr intensity ratio of electric and magnetic dipole emission,” J. Phys. Chem. Solids27(10), 1587–1592 (1966). [CrossRef]
  16. J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B23(2), 843–848 (2005).
  17. A. F. Kirby, D. Foster, and F. S. Richardson, “Comparison of 7FJ←5DO emission spectra for Eu (III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry,” Chem. Phys. Lett.95(6), 507–512 (1983). [CrossRef]
  18. C. D. Geddes and J. R. Lakowicz, “Editorial: Metal-enhanced fluorescence,” J. Fluoresc.12(2), 121–129 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited