OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2319–2334

Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect

Peng-Fei Qiao, Shin Mou, and Shun Lien Chuang  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2319-2334 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1012 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The electronic band structures and optical properties of type-II superlattice (T2SL) photodetectors in the mid-infrared (IR) range are investigated. We formulate a rigorous band structure model using the 8-band k · p method to include the conduction and valence band mixing. After solving the 8 × 8 Hamiltonian and deriving explicitly the new momentum matrix elements in terms of envelope functions, optical transition rates are obtained through the Fermi’s golden rule under various doping and injection conditions. Optical measurements on T2SL photodetectors are compared with our model and show good agreement. Our modeling results of quantum structures connect directly to the device-level design and simulation. The predicted doping effect is readily applicable to the optimization of photodetectors. We further include interfacial (IF) layers to study the significance of their effect. Optical properties of T2SLs are expected to have a large tunable range by controlling the thickness and material composition of the IF layers. Our model provides an efficient tool for the designs of novel photodetectors.

© 2012 OSA

OCIS Codes
(040.4200) Detectors : Multiple quantum well
(040.5160) Detectors : Photodetectors
(160.1890) Materials : Detector materials
(160.4760) Materials : Optical properties

ToC Category:

Original Manuscript: October 19, 2011
Revised Manuscript: November 29, 2011
Manuscript Accepted: December 19, 2011
Published: January 18, 2012

Peng-Fei Qiao, Shin Mou, and Shun Lien Chuang, "Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect," Opt. Express 20, 2319-2334 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Sai-Halasz, R. Tsu, and L. Esaki, “A new semiconductor superlattice,” Appl. Phys. Lett.30, 651–653 (1977). [CrossRef]
  2. D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys.62, 2545–2548 (1987). [CrossRef]
  3. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264, 553–556 (1994). [CrossRef] [PubMed]
  4. C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature,” Appl. Phys. Lett.95, 231103 (2009). [CrossRef]
  5. J. V. Li, R. Q. Yang, C. J. Hill, and S. L. Chuang, “Interband cascade detectors with room temperature photovoltaic operation,” Appl. Phys. Lett.86, 101102 (2005). [CrossRef]
  6. H. Mohseni, V. I. Litvinov, and M. Razeghi, “Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices,” Phys. Rev. B58, 15378–15380 (1998). [CrossRef]
  7. E. Kane, “The k · p method,” in Physics of III–V Cmopounds, Vol. 1 of Semiconductors and Semimetals,R. Willardson and A. Beer, eds. (Academic Press, New York, 1966), pp. 75–100. [PubMed]
  8. J. M. Luttinger and W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev.97, 869–883 (1955). [CrossRef]
  9. G. Liu and S. L. Chuang, “Modeling of Sb-based type-II quantum cascade lasers,” Phys. Rev. B65, 165220 (2002). [CrossRef]
  10. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, New York, 2009), Chap. 4 and 9.
  11. L.-W. Wang, S.-H. Wei, T. Mattila, A. Zunger, I. Vurgaftman, and J. R. Meyer, “Multiband coupling and electronic structure of (InAs)n/(GaSb)n superlattices,” Phys. Rev. B60, 5590–5596 (1999). [CrossRef]
  12. Y.-M. Mu and S. S. Pei, “Effects of anisotropic k.p interactions on energy bands and optical properties of type-II interband cascade lasers,” J. Appl. Phys.96, 1866–1879 (2004). [CrossRef]
  13. S. Mou, J. V. Li, and S. L. Chuang, “Quantum efficiency analysis of InAs-GaSb type-II superlattice photodiodes,” IEEE J. Quantum Electron.45, 737–743 (2009). [CrossRef]
  14. F. Szmulowicz, “Derivation of a general expression for the momentum matrix elements within the envelope-function approximation,” Phys. Rev. B51, 1613–1623 (1995). [CrossRef]
  15. Y.-C. Chang and R. B. James, “Saturation of intersubband transitions in p-type semiconductor quantum wells,” Phys. Rev. B39, 12672–12681 (1989). [CrossRef]
  16. E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids1, 249–261 (1957). [CrossRef]
  17. P. O. Löwdin, “A note on the quantum-mechanical perturbation theory,” J. Chem. Phys.19, 1396–1401 (1951). [CrossRef]
  18. C. S. Chang and S. L. Chuang, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron.1, 218–229 (1995). [CrossRef]
  19. J. V. Li, C. J. Hill, J. Mumolo, S. Gunapala, S. Mou, and S. L. Chuang, “Midinfrared type-II InAs/GaSb super-lattice photodiodes toward room temperature operation,” Appl. Phys. Lett.93, 163505 (2008). [CrossRef]
  20. C. J. Hill, J. V. Li, J. M. Mumolo, and S. D. Gunapala, “MBE grown type-II MWIR and LWIR superlattice photodiodes,” Infrared Phys. Techn.50, 187–190 (2007). [CrossRef]
  21. A. Khoshakhlagh, E. Plis, S. Myers, Y. D. Sharma, L. R. Dawson, and S. Krishna, “Optimization of InAs/GaSb type-II superlattice interfaces for long-wave (∼8μm) infrared detection,” J. Cryst. Growth311, 1901–1904 (2009). [CrossRef]
  22. H. J. Haugan, G. J. Brown, L. Grazulis, K. Mahalingam, and D. H. Tomich, “Optimization of InAs/GaSb type-II superlattices for high performance of photodetectors,” Physica E20, 527–530 (2004). [CrossRef]
  23. Y. Huang, J.-H. Ryou, R. D. Dupuis, A. Petschke, M. Mandl, and S. L. Chuang, “InAs/GaSb type-II superlattice structures and photodiodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett.96, 251107 (2010). [CrossRef]
  24. Y. Wei and M. Razeghi, “Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering,” Phys. Rev. B69, 085316 (2004). [CrossRef]
  25. G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).
  26. T. B. Bahder, “Analytic dispersion relations near the γ point in strained zinc-blende crystals,” Phys. Rev. B45, 1629–1637 (1992). [CrossRef]
  27. T. E. Ostromek, “Evaluation of matrix elements of the 8 × 8 k · p Hamiltonian with k-dependent spin-orbit contributions for the zinc-blende structure of GaAs,” Phys. Rev. B54, 14467–14479 (1996). [CrossRef]
  28. G. Dresselhaus, “Spin-orbit coupling effects in zinc blende structures,” Phys. Rev.100, 580–586 (1955). [CrossRef]
  29. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for IIIV compound semiconductors and their alloys,” J. Appl. Phys.89, 5815–5875 (2001). [CrossRef]
  30. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B39, 1871–1883 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited