OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2354–2362

Performance of electro-optical plasmonic ring resonators at telecom wavelengths

Sukanya Randhawa, Sébastien Lachèze, Jan Renger, Alexandre Bouhelier, Roch Espiau de Lamaestre, Alain Dereux, and Romain Quidant  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2354-2362 (2012)
http://dx.doi.org/10.1364/OE.20.002354


View Full Text Article

Enhanced HTML    Acrobat PDF (1060 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work we report on the characteristics of an electro-optical dielectric-loaded surface plasmon polariton waveguide ring resonator. By doping the dielectric host matrix with an electro-optical material and designing an appropriate set of planar electrodes, we measured a 16% relative change of transmission upon application of a controlled electric field. We have analyzed the temporal response of the device and conclude that electrostriction of the host matrix is playing a dominating role in the transmission response.

© 2012 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 9, 2011
Revised Manuscript: November 21, 2011
Manuscript Accepted: December 9, 2011
Published: January 19, 2012

Citation
Sukanya Randhawa, Sébastien Lachèze, Jan Renger, Alexandre Bouhelier, Roch Espiau de Lamaestre, Alain Dereux, and Romain Quidant, "Performance of electro-optical plasmonic ring resonators at telecom wavelengths," Opt. Express 20, 2354-2362 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2354


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006). [CrossRef] [PubMed]
  2. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9, 20–27 (2006). [CrossRef]
  3. J.-C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B68, 115401–115411 (2003). [CrossRef]
  4. A. Hohenau, J. R. Krenn, A. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett.30, 893–895 (2005). [CrossRef] [PubMed]
  5. S. I. Bozhevolnyi, Plasmonic Nanowaveguides and Cirquits (Pan Stanford Publishing, 2009)
  6. J.-C. Weeber, M. U. González, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett.87, 221101 (2005). [CrossRef]
  7. A. V. Krasavin, P. M. Bolger, G. A. Wurtz, and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90, 211101 (2007). [CrossRef]
  8. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend-and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express.16, 13585–13592 (2008). [CrossRef] [PubMed]
  9. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon bragg mirrors,” Opt. Express18, 14496–14510 (2010). [CrossRef] [PubMed]
  10. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett.7, 1697–1700 (2007). [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006). [CrossRef] [PubMed]
  12. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007). [CrossRef]
  13. M. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett.8, 4048–4052 (2008). [CrossRef] [PubMed]
  14. N. Galler, H. Ditlbacher, B. Steinberger, A. Hohenau, M. Dansachmueller, F. Camacho-Gonzales, S. Bauer, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Electrically actuated elastomers for electro-optical modulators,” Appl. Phys. B, 85, 7–10 (2006). [CrossRef]
  15. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009). [CrossRef]
  16. G. P. Wiederrecht, J. Hall, and A. Bouhelier, “Control of molecular energy redistribution pathways via surface plasmon gating,” Phys. Rev. Lett.98, 083001–083005 (2007). [CrossRef] [PubMed]
  17. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Daia, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 624–631 (2009). [CrossRef]
  18. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express18, 11791–11799 (2010). [CrossRef] [PubMed]
  19. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10, 4851–4857 (2010). [CrossRef]
  20. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguidering resonators,” Opt. Express17, 2968–2975 (2009). [CrossRef] [PubMed]
  21. S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett.98, 161102 (2011). [CrossRef]
  22. J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett.9, 2935–2939 (2009). [CrossRef] [PubMed]
  23. A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express19, 2972–2978 (2011). [CrossRef] [PubMed]
  24. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010). [CrossRef] [PubMed]
  25. A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.97, 041107–041109 (2010). [CrossRef]
  26. A. Nahata, C. Wu, and J. T. Yardley, “Electrooptic characterization of organic media,” IEEE Trans. Instrum. Meas.41, 128–131 (1992). [CrossRef]
  27. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007). [CrossRef]
  28. J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett.96, 063105 (2010). [CrossRef]
  29. J. Berthelot, A. Bouhelier, G. C. des Francs, J.-C. Weeber, and A. Dereux, “Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon,” Opt. Express19, 5303–5312 (2011). [CrossRef] [PubMed]
  30. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization,” Appl. Phys. Lett.92, 011124 (2008). [CrossRef]
  31. A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntherodt, and D. W. Pohl, “Plasmon transmissivity and reflectivity of narrow grooves in a silver film,” J. Microsc.194, 571–573 (1999). [CrossRef]
  32. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, B. S. H. Ditlbacher, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B148, 220–229 (2008). [CrossRef]
  33. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B64, 045411–045420 (2001). [CrossRef]
  34. A. Bouhelier and G. P. Wiederrecht, “Surface plasmon rainbow jet,” Opt. Lett.30, 884 (2005). [CrossRef] [PubMed]
  35. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett.89, 091117 (2006). [CrossRef]
  36. C. T. Nguyen, R. Hierle, J. Zyss, B. A. Journet, and P. Labbe, “New electro-optic modulator based on polymer waveguide and loop structure,” Proc. SPIE237, 5351 (2004).
  37. S. Michel, J. Zyss, I. Ledoux-Rak, and C. T. Nguyen, “High-performance electro-optic modulators realized with a commercial side-chain DR1-pmma electro-optic copolymer,” Proc. SPIE7599, 75990I (2010). [CrossRef]
  38. D. Perron, M. Wu, C. Horvath, D. Bachman, and V. Van, “All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator,” Opt. Lett.36, 2731–2733 (2011). [CrossRef] [PubMed]
  39. K. Ohara, M. Hennecke, and J. Furhmann, “Electrostriction of polymethacrylates,” Colloid Polym. Sci.260, 164–168 (1982). [CrossRef]
  40. Y. Jiang, Z. Cao, G. Chen, X. Dou, and Y. Chen, “Low voltage electro-optic polymer light modulator using attenuated total intenal reflection,” Opt. Laser Technol.33(6), 417–420 (2001). [CrossRef]
  41. J. Renger, S. Grafström, and M. Lukas Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B76, 045431–045438 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited