OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2399–2407

Photon correlation in single-photon frequency upconversion

Xiaorong Gu, Kun Huang, Haifeng Pan, E Wu, and Heping Zeng  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2399-2407 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1142 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

© 2012 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(190.7220) Nonlinear optics : Upconversion
(230.0040) Optical devices : Detectors

ToC Category:

Original Manuscript: October 11, 2011
Revised Manuscript: December 14, 2011
Manuscript Accepted: January 15, 2012
Published: January 19, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Xiaorong Gu, Kun Huang, Haifeng Pan, E Wu, and Heping Zeng, "Photon correlation in single-photon frequency upconversion," Opt. Express 20, 2399-2407 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995). [CrossRef] [PubMed]
  2. D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390(6660), 575–579 (1997). [CrossRef]
  3. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437(7055), 116–120 (2005). [CrossRef] [PubMed]
  4. P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A81(2), 021801 (2010). [CrossRef]
  5. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D18(2), 155–160 (2002). [CrossRef]
  6. A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-IIPPLN waveguide emitting at a telecom wavelength,” New J. Phys.12(10), 103005 (2010). [CrossRef]
  7. K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. Arbore, M. M. Fejer, F. K. Tittel, and L. W. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN,” Appl. Phys. B64, 567–572 (1997). [CrossRef]
  8. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A70(3), 031802 (2004). [CrossRef]
  9. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A75(2), 023803 (2007). [CrossRef]
  10. H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett.101(17), 173901 (2008). [CrossRef] [PubMed]
  11. J. Chen, F. K. Lee, X. Li, L. P. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in the telecom band,” New J. Phys.9(8), 289 (2007). [CrossRef]
  12. J. Chen, J. B. Altepeter, and P. Kumar, “Quantum-state engineering using nonlinear optical Sangac loops,” New J. Phys.10(12), 123019 (2008). [CrossRef]
  13. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4(11), 786–791 (2010). [CrossRef]
  14. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 microm by means of frequency upconversion,” Opt. Lett.29(13), 1449–1451 (2004). [CrossRef] [PubMed]
  15. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett.29, 1518–1520 (2004). [CrossRef] [PubMed]
  16. H. Pan and H. Zeng, “Efficient and stable single-photon counting at 1.55 microm by intracavity frequency upconversion,” Opt. Lett.31(6), 793–795 (2006). [CrossRef] [PubMed]
  17. J. M. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett.68(14), 2153–2156 (1992). [CrossRef] [PubMed]
  18. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fiber,” New J. Phys.7, 232 (2005). [CrossRef]
  19. R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett.93(7), 071104 (2008). [CrossRef]
  20. L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector(1),” Opt. Express17(16), 14395–14404 (2009). [CrossRef] [PubMed]
  21. E. Pomarico, B. Sanguinetti, R. Thew, and H. Zbinden, “Room temperature photon number resolving detector for infared wavelengths,” Opt. Express18(10), 10750–10759 (2010). [CrossRef] [PubMed]
  22. K. Huang, X. Gu, M. Ren, Y. Jian, H. Pan, G. Wu, E. Wu, and H. Zeng, “Photon-number-resolving detection at 1.04 μm via coincidence frequency upconversion,” Opt. Lett.36(9), 1722–1724 (2011). [CrossRef] [PubMed]
  23. X. Gu, Y. Li, H. Pan, E. Wu, and H. Zeng, “High-speed single-photon frequency upconversion with synchronous pump pulses,” IEEE J. Sel. Top. Quantum Electron.15(6), 1748–1752 (2009). [CrossRef]
  24. X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett.96(13), 131111 (2010). [CrossRef]
  25. P. Kumar, “Quantum frequency conversion,” Opt. Lett.15(24), 1476–1478 (1990). [CrossRef] [PubMed]
  26. H. Pan, E. Wu, H. Dong, and H. Zeng, “Single-photon frequency up-conversion with multimode pumping,” Phys. Rev. A77(3), 033815 (2008). [CrossRef]
  27. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D18(2), 191–196 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited