OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2452–2459

Model calculations for enhanced fluorescence in photonic crystal phosphor

Kyungtaek Min, Yun-Kyoung Choi, and Heonsu Jeon  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2452-2459 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2401 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel photonic structure, based on the photonic crystal (PC) effect, which simulations show results in an improved fluorescence efficiency from embedded phosphor. To be specific, the phosphor pumping efficiency can be significantly improved by tuning the pump photon energy to a photonic band-edge (PBE) of the PC phosphor. We have confirmed this theoretically by calculating optical properties of one-dimensional PC phosphor structures using the transfer-matrix method and plane-wave expansion method. For a particular model structure based on a quantum dot phosphor, the fluorescence enhancement factor was estimated to be as high as 6.9 for a monochromatic pump source and 2.2 for a broad bandwidth (20 nm) pump source.

© 2012 OSA

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(260.2510) Physical optics : Fluorescence
(310.4165) Thin films : Multilayer design
(230.5298) Optical devices : Photonic crystals
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Photonic Crystals

Original Manuscript: October 24, 2011
Revised Manuscript: December 7, 2011
Manuscript Accepted: January 3, 2012
Published: January 19, 2012

Kyungtaek Min, Yun-Kyoung Choi, and Heonsu Jeon, "Model calculations for enhanced fluorescence in photonic crystal phosphor," Opt. Express 20, 2452-2459 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009). [CrossRef]
  2. C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 Years of Research and Application,” Adv. Funct. Mater.13(7), 511–516 (2003). [CrossRef]
  3. W.-J. Yang, L. Luo, T.-M. Chen, and N.-S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater.17(15), 3883–3888 (2005). [CrossRef]
  4. R.-J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors,” Appl. Phys. Lett.88(10), 101104 (2006). [CrossRef]
  5. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  6. H. Yokoyama, “Physics and device applications of optical microcavities,” Science256(5053), 66–70 (1992). [CrossRef] [PubMed]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  8. C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett.77(18), 2813–2815 (2000). [CrossRef]
  9. Y.-G. Roh, S. Yoon, H. Jeon, S.-H. Han, and Q.-H. Park, “Experimental verification of cross talk reduction in photonic crystal waveguide crossings,” Appl. Phys. Lett.85(16), 3351–3353 (2004). [CrossRef]
  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008), Chap. 4.
  11. P. Yeh, Optical Waves in Layered Media (Wiley, 1988), Chap. 6.
  12. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009), Chap. 9.
  13. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B20(7), 1538–1541 (2003). [CrossRef]
  14. Y. Liu, C. Jiang, Y. Lin, and W. Xu, “Slow-light enhancement of stimulated emission of atomic systems in photonic crystals,” J. Opt. Soc. Am. B27(3), 442–446 (2010). [CrossRef]
  15. C. M. Johnson, P. J. Reece, and G. J. Conibeer, “Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals,” Opt. Lett.36(20), 3990–3992 (2011). [CrossRef] [PubMed]
  16. A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, “Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media,” J. Am. Chem. Soc.112(4), 1327–1332 (1990). [CrossRef]
  17. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” J. Phys. Chem. B105(37), 8861–8871 (2001). [CrossRef]
  18. K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, “Development of high-bright and pure-white LED lamps,” J. Light Visual Environ.22(1), 2–5 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited