OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2581–2586

Breaking the imaging symmetry in negative refraction lenses

Changbao Ma and Zhaowei Liu  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2581-2586 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1546 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical lenses are pervasive in various areas of sciences and technologies. It is well known that conventional lenses have symmetrical imaging properties along forward and backward directions. In this letter, we show that hyperbolic plasmonic metamaterial based negative refraction lenses perform as either converging lenses or diverging lenses depending on the illumination directions. New imaging equations and properties that are different from those of all the existing optical lenses are also presented. These new imaging properties, including symmetry breaking as well as the super resolving power, significantly expand the horizon of imaging optics and optical system design.

© 2012 OSA

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(220.3630) Optical design and fabrication : Lenses
(160.3918) Materials : Metamaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Imaging Systems

Original Manuscript: November 23, 2011
Revised Manuscript: January 13, 2012
Manuscript Accepted: January 13, 2012
Published: January 20, 2012

Changbao Ma and Zhaowei Liu, "Breaking the imaging symmetry in negative refraction lenses," Opt. Express 20, 2581-2586 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Kepler, Dioptrice (Augsburg: Franci, 1611).
  2. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  3. E. Abbe, “Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosc. Anat. Entwicklungsmech. 9(1), 413–418 (1873). [CrossRef]
  4. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999). [CrossRef]
  5. S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78(26), 4071–4073 (2001). [CrossRef]
  6. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  7. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008). [CrossRef] [PubMed]
  8. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  9. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  10. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  11. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007). [CrossRef] [PubMed]
  12. E. E. Narimanov, “Far-field superlens: optical nanoscope,” Nat. Photonics 1(5), 260–261 (2007). [CrossRef]
  13. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  14. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]
  15. Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Appl. Phys. Lett. 94(20), 203108 (2009). [CrossRef]
  16. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007). [CrossRef] [PubMed]
  17. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9(10), 3447–3452 (2009). [CrossRef] [PubMed]
  18. F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009). [CrossRef] [PubMed]
  19. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103(3), 033902–033904 (2009). [CrossRef] [PubMed]
  20. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008). [CrossRef] [PubMed]
  21. C. Ma, R. Aguinaldo, and Z. Liu, “Advances in the hyperlens,” Chin. Sci. Bull. 55(24), 2618–2624 (2010). [CrossRef]
  22. C. Ma and Z. Liu, “Focusing light into deep subwavelength using metamaterial immersion lenses,” Opt. Express 18(5), 4838–4844 (2010). [CrossRef] [PubMed]
  23. C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010). [CrossRef]
  24. C. Ma and Z. Liu, “Designing super-resolution metalenses by the combination of metamaterials and nanoscale plasmonic waveguide couplers,” J. Nanophotonics 5(1), 051604 (2011). [CrossRef]
  25. S. Thongrattanasiri and V. A. Podolskiy, “Hypergratings: nanophotonics in planar anisotropic metamaterials,” Opt. Lett. 34(7), 890–892 (2009). [CrossRef] [PubMed]
  26. T. Zentgraf, J. Valentine, N. Tapia, J. Li, and X. Zhang, “An optical “Janus” device for integrated photonics,” Adv. Mater. (Deerfield Beach Fla.) 22(23), 2561–2564 (2010). [CrossRef] [PubMed]
  27. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  28. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  29. C. Ma, M. A. Escobar, and Z. Liu, “Extraordinary light focusing and Fourier transform propertties of gradient-index metalenses,” Phys. Rev. B 84(19), 195142 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited