OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2626–2639

Figure of merit for photonic differentiators

Reza Ashrafi and José Azaña  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2626-2639 (2012)
http://dx.doi.org/10.1364/OE.20.002626


View Full Text Article

Enhanced HTML    Acrobat PDF (1016 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a universal figure of merit to evaluate the processing speed (operation bandwidth) performance of arbitrary-order optical differentiators. In particular, we define the maximum-to-minimum bandwidth ratio (MMBR) as a main figure of merit of these devices, which essentially informs about the broadness of the acceptable input pulse bandwidth range. We derive and numerically confirm a general analytical expression for the MMBR of an arbitrary optical differentiator, showing that this can be expressed simply as a function of the differentiator’s amplitude resonance depth. The device MMBR can be improved by increasing the filter’s resonance depth, depending also on the differentiation order; in particular, the MMBR quickly deteriorates as the differentiator order is increased. In our analysis, photonic differentiators are considered in two main groups, namely (i) non-minimum phase and (ii) minimum phase optical filtering implementations. The derived analytical expression for the device MMBR is generalized for these two different solutions, and the validity of the obtained analytical estimates is verified through numerical simulations, including results for the cases of 1st-, 2nd-, and 3rd-order differentiators.

© 2012 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(230.1150) Optical devices : All-optical devices
(320.5540) Ultrafast optics : Pulse shaping
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(070.7145) Fourier optics and signal processing : Ultrafast processing

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: October 21, 2011
Revised Manuscript: January 5, 2012
Manuscript Accepted: January 9, 2012
Published: January 20, 2012

Citation
Reza Ashrafi and José Azaña, "Figure of merit for photonic differentiators," Opt. Express 20, 2626-2639 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2626


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Azaña, C. K. Madsen, K. Takiguchi, and G. Cincontti, Special Issue on “Optical signal processing,” J. Lightwave Technol.24(7), 2484–2486 (2006). [CrossRef]
  2. C. K. Madsen, D. Dragoman, and J. Azaña, eds., Special Issue on “Signal analysis tools for optical signal processing,” J. Adv. Signal Proc., 1449–1623 (2005).
  3. J. Azaa, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photon. J.2(3), 359–386 (2010). [CrossRef]
  4. N. Q. Ngo and L. N. Binh, “Optical realization of Newton-Cotes-based integrators for dark soliton generation,” J. Lightwave Technol.24(1), 563–572 (2006). [CrossRef]
  5. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T.-J. Ahn, S. LaRochelle, and J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express16(22), 18202–18214 (2008). [CrossRef] [PubMed]
  6. N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, “A new theoretical basis of higher-derivative optical differentiators,” Opt. Commun.230(1-3), 115–129 (2004). [CrossRef]
  7. R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, “Ultrafast all-optical differentiators,” Opt. Express14(22), 10699–10707 (2006). [CrossRef] [PubMed]
  8. L. M. Rivas, S. Boudreau, Y. Park, R. Slavík, S. Larochelle, A. Carballar, and J. Azaña, “Experimental demonstration of ultrafast all-fiber high-order photonic temporal differentiators,” Opt. Lett.34(12), 1792–1794 (2009). [CrossRef] [PubMed]
  9. M. Kulishov, D. Krcmarík, and R. Slavík, “Design of terahertz-bandwidth arbitrary-order temporal differentiators based on long-period fiber gratings,” Opt. Lett.32(20), 2978–2980 (2007). [CrossRef] [PubMed]
  10. R. Slavík, Y. Park, M. Kulishov, and J. Azaña, “Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings,” Opt. Lett.34(20), 3116–3118 (2009). [CrossRef] [PubMed]
  11. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express16(20), 15880–15886 (2008). [CrossRef] [PubMed]
  12. M. Li, D. Janner, J. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration,” Opt. Express17(22), 19798–19807 (2009). [CrossRef] [PubMed]
  13. D. Gatti, T. T. Fernandez, S. Longhi, and P. Laporta, “Temporal differentiators based on highly-structured fibre Bragg gratings,” Electron. Lett.46(13), 943–945 (2010). [CrossRef]
  14. M. A. Preciado and M. A. Muriel, “Design of an ultrafast all-optical differentiator based on a fiber Bragg grating in transmission,” Opt. Lett.33(21), 2458–2460 (2008). [CrossRef] [PubMed]
  15. M. Kulishov and J. Azaña, “Long-period fiber gratings as ultrafast optical differentiators,” Opt. Lett.30(20), 2700–2702 (2005). [CrossRef] [PubMed]
  16. R. Ashrafi, M. H. Asghari, and J. Azaña, “Ultrafast optical arbitrary-order differentiators based on apodized long period gratings,” IEEE Photon. J.3(3), 353–364 (2011). [CrossRef]
  17. M. H. Asghari and J. Azaña, “All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis,” Opt. Lett.34(3), 334–336 (2009). [CrossRef] [PubMed]
  18. M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” J. Lightwave Technol.22, 1559–1561 (2010).
  19. T. Jannson, “Real-time Fourier transformation in dispersive optical fibers,” Opt. Lett.8(4), 232–234 (1983). [CrossRef] [PubMed]
  20. J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron.36(5), 517–526 (2000). [CrossRef]
  21. F. Li, Y. Park, and J. Azaña, “Linear characterization of optical pulses with durations ranging from the picosecond to the nanosecond regime using ultrafast photonic differentiation,” J. Lightwave Technol.27(21), 4623–4633 (2009). [CrossRef]
  22. H. J. A. da Silva and J. J. O’Reilly, “Optical pulse modeling with Hermite-Gaussian functions,” Opt. Lett.14(10), 526–528 (1989). [CrossRef] [PubMed]
  23. M. H. Asghari and J. Azaña, “Proposal and analysis of a reconfigurable pulse shaping technique based on multi-arm optical differentiators,” Opt. Commun.281(18), 4581–4588 (2008). [CrossRef]
  24. M. Stratmann, T. Pagel, and F. Mitschke, “Experimental observation of temporal soliton molecules,” Phys. Rev. Lett.95(14), 143902 (2005). [CrossRef] [PubMed]
  25. L. K. Oxenløwe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, “640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper,” IEEE J. Sel. Top. Quantum Electron.14(3), 566–572 (2008). [CrossRef]
  26. L. K. Oxenløwe, M. Galili, H. Hu, H. Ji, E. Palushani, J. L. Areal, J. Xu, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Serial optical communications and ultra-fast optical signal processing of Tbit/s data signals,” IEEE Topical Meeting on Microwave Photonics (MWP2010), Montreal Quebec, Canada, 361–364, 5–9 Oct. 2010.
  27. N. Q. Ngo, L. N. Binh, and X. Dai, “Optical dark-soliton generators and detectors,” Opt. Commun.132(3-4), 389–402 (1996). [CrossRef]
  28. P. Velanas, A. Bogris, A. Argyris, and D. Syvridis, “High-speed all-optical first- and second-order differentiators based on cross-phase modulation in fibers,” J. Lightwave Technol.26(18), 3269–3276 (2008). [CrossRef]
  29. Z. Li and C. Wu, “All-optical differentiator and high-speed pulse generation based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Lett.34(6), 830–832 (2009). [CrossRef] [PubMed]
  30. Y. Park, M. H. Asghari, R. Helsten, and J. Azaña, “Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor,” IEEE Photon. J.2, 1040–1050 (2010).
  31. J. Zhou, S. Fu, S. Aditya, P. P. Shum, C. Lin, V. Wong, and D. Lim, “Photonic temporal differentiator based on polarization modulation in a LiNbO3 phase modulator,” IEEE International Topical Meeting on Microwave Photonics MWP '09, 1–3, 2009.
  32. A. V. Okishev, “Optical differentiation and multimillijoule approximately 150 ps pulse generation in a regenerative amplifier with a temperature-tuned intracavity volume Bragg grating,” Appl. Opt.49(8), 1331–1334 (2010). [CrossRef] [PubMed]
  33. J. Xu, X. Zhang, J. Dong, D. Liu, and D. Huang, “All-optical differentiator based on cross-gain modulation in semiconductor optical amplifier,” Opt. Lett.32(20), 3029–3031 (2007). [CrossRef] [PubMed]
  34. X. Li, J. Dong, Y. Yu, and X. Zhang, “A tunable microwave photonic filter based on an all-optical differentiator,” IEEE Photon. Technol. Lett.23(5), 308–310 (2011). [CrossRef]
  35. J. Niu, K. Xu, X. Sun, Q. Lv, J. Dai, J. Wu, and J. Lin, “Instantaneous microwave frequency measurement using a photonic differentiator and an opto-electric hybrid implementation,” Asia-Pacific Microwave Photonics Conference 2010 (APMP2010), Hong Kong, China, 26–28 April 2010.
  36. A. V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice Hall, 1996).
  37. J. Skaar, “Synthesis of fiber Bragg gratings for use in transmission,” J. Opt. Soc. Am. A18(3), 557–564 (2001). [CrossRef]
  38. A. Papoulis, The Fourier Integral and Its Applications (New York McGraw-Hill, 1962).
  39. J. K. Brenne and J. Skaar, “Design of grating-assisted codirectional couplers with discrete inverse-scattering algorithms,” J. Lightwave Technol.21(1), 254–263 (2003). [CrossRef]
  40. K. A. Winick, “Design of grating-assisted waveguide couplers with weighted coupling,” J. Lightwave Technol.9(11), 1481–1492 (1991). [CrossRef]
  41. G.-W. Chern and L. A. Wang, “Analysis and design of almost-periodic vertical-grating-assisted codirectional coupler filters with nonuniform duty ratios,” Appl. Opt.39(25), 4629–4637 (2000). [CrossRef] [PubMed]
  42. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997). [CrossRef]
  43. R. Slavík, “Extremely deep long-period fiber grating made with CO2 laser,” IEEE Photon. Technol. Lett.18(16), 1705–1707 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited