OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2693–2705

Infrared surface polaritons on antimony

Justin W. Cleary, Gautam Medhi, Monas Shahzad, Imen Rezadad, Doug Maukonen, Robert E. Peale, Glenn D. Boreman, Sandy Wentzell, and Walter R. Buchwald  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2693-2705 (2012)
http://dx.doi.org/10.1364/OE.20.002693


View Full Text Article

Enhanced HTML    Acrobat PDF (2549 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The semimetal antimony, with a plasma frequency ~80 times less than that of gold, is potentially useful as a host for infrared surface polaritons (SPs). Relevant IR SP properties, including the frequency-dependent propagation length and penetration depths for fields into the media on either side of the interface, were determined from optical constants measured on optically-thick thermally-evaporated Sb films over the wavelength range 1 to 40 μm. Plasma and carrier relaxation frequencies were determined from Drude-model fits to these data. The real part of the permittivity is negative for wavelengths beyond 11 μm. Distinct resonant decreases in specular reflected intensity were observed for Sb lamellar gratings in the wavelength range of 6 to 11 μm, where the real part of the permittivity is positive. Both resonance angles and the angular reflectance spectral line shapes are in agreement with theory for excitation of bound surface electromagnetic waves (SPs). Finite element method (FEM) electrodynamic simulations indicate the existence of SP modes under conditions matching the experiments. FEM results also show that such waves depend on having a significant imaginary part of the permittivity, as has been noted earlier for the case of surface exciton polaritons.

© 2012 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(350.2770) Other areas of optics : Gratings
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 9, 2011
Revised Manuscript: January 5, 2012
Manuscript Accepted: January 5, 2012
Published: January 23, 2012

Citation
Justin W. Cleary, Gautam Medhi, Monas Shahzad, Imen Rezadad, Doug Maukonen, Robert E. Peale, Glenn D. Boreman, Sandy Wentzell, and Walter R. Buchwald, "Infrared surface polaritons on antimony," Opt. Express 20, 2693-2705 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2693


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Brillante, I. Pockrand, M. R. Philpott, and J. D. Swalen, “Experimental Observation of Exciton Surface Polaritons on a Polymerized Diacetylene Crystal,” Chem. Phys. Lett.57(3), 395–399 (1978). [CrossRef]
  2. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported By Thin Films,” Phys. Rev. B Condens. Matter44(11), 5855–5872 (1991). [CrossRef] [PubMed]
  3. F. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental Observation of Surface Exciton-polaritons on Vanadium using Infrared Radiation,” J. Mod. Opt.37(9), 1545–1553 (1990). [CrossRef]
  4. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express16(9), 6507–6514 (2008). [CrossRef] [PubMed]
  5. J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B27(4), 730–734 (2010). [CrossRef]
  6. M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys.110(12), 123105 (2011). [CrossRef]
  7. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys.110(4), 043110 (2011). [CrossRef]
  8. H. Raether, “Surface plasma oscillations and their applications,” in Physics of Thin Films (Academic Press, New York, 1977) 9, 145–261.
  9. J. W. Cleary, G. Medhi, R. E. Peale, and W. R. Buchwald, “Long-wave infrared surface plasmon grating coupler,” Appl. Opt.49(16), 3102–3110 (2010). [CrossRef] [PubMed]
  10. P. Halevi, in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, Chichester, 1982).
  11. M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations, (Cambridge Univ. Cambridge UK, 1988).
  12. E. B. Sernelius, Surface modes in Physics, (Wiley-Vch, Berlin, 2000).
  13. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1988).
  14. K. Welford, “Surface plasmon-polaritons and their uses,” Opt. Quantum Electron.23(1), 1–27 (1991). [CrossRef]
  15. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt.4(10), 1275–1297 (1965). [CrossRef]
  16. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media, Course of theoretical physics vol. 8 (Butterworth-Heinenann, Oxford, 2002), Sect. 87.
  17. E. B. Saff and A. D. Snider, Fundamentals of complex analysis with applications to engineering and science, 3rd ed. (Pearson Education,Upper Saddle River, New Jersey, 2003).
  18. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996).
  19. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew, Heidelberg, 2005).
  20. T. J. Fox, R. P. Howson, and D. C. Emmony, “Optical properties of thin films of antimony,” J. Phys. D Appl. Phys.7(13), 1864–1872 (1974). [CrossRef]
  21. L. Harris and F. R. Corrigan, “Optical and electrical properties of antimony deposits,” J. Opt. Soc. Am.54(12), 1437–1441 (1964). [CrossRef]
  22. I. N. Shkliarevskii, A. A. Avdeenki, and V. G. Padalka, “Measurements of the Optical Constants of Antimony in the Infrared Region of the Spectrum at Temperatures of 290° and 110°,” Opt. Spectrosc.6, 336 (1959).
  23. J. W. Cleary, G. Medhi, R. E. Peale, W. Buchwald, O. Edwards, and I. Oladeji, “Infrared surface plasmon resonance biosensor,” Proc. SPIE7673, 767306, 767306-11 (2010). [CrossRef]
  24. J. W. Cleary, R. E. Peale, D. Shelton, G. D. Boreman, R. Soref, and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” Proc. MRS1133, 1133-AA10-03 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited