OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2717–2724

Phase-coherent repetition rate multiplication of a mode-locked laser from 40 MHz to 1 GHz by injection locking

D. Kielpinski and O. Gat  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2717-2724 (2012)
http://dx.doi.org/10.1364/OE.20.002717


View Full Text Article

Enhanced HTML    Acrobat PDF (2110 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have used injection locking to multiply the repetition rate of a passively mode-locked femtosecond fiber laser from 40 MHz to 1 GHz while preserving optical phase coherence between the master laser and the slave output. The system is implemented almost completely in fiber and incorporates gain and passive saturable absorption. The slave repetition rate is set to a rational harmonic of the master repetition rate, inducing pulse formation at the least common multiple of the master and slave repetition rates.

© 2012 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3520) Lasers and laser optics : Lasers, injection-locked
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 7, 2011
Revised Manuscript: January 9, 2012
Manuscript Accepted: January 9, 2012
Published: January 23, 2012

Citation
D. Kielpinski and O. Gat, "Phase-coherent repetition rate multiplication of a mode-locked laser from 40 MHz to 1 GHz by injection locking," Opt. Express 20, 2717-2724 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2717


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz Self-Referenced Optical Frequency Comb,” Science326(5953), 681 (2009). http://www.sciencemag.org/content/326/5953/681.full.pdf , URL http://www.sciencemag.org/content/326/5953/681.abstract . [CrossRef] [PubMed]
  2. A. J. Benedick, G. Chang, J. R. Birge, L.-J. Chen, A. G. Glenday, C.-H. Li, D. F. Phillips, A. Szentgyorgyi, S. Korzennik, G. Furesz, R. L. Walsworth, and F. X. Kärtner, “Visible wavelength astro-comb,” Opt. Express18(18), 19175–19184 (2010). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-18-18-19175 . [CrossRef] [PubMed]
  3. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection,” Science311, 1595–1599 (2006). [CrossRef] [PubMed]
  4. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nature Photon.4, 760–766 (2010). [CrossRef]
  5. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Set, “5-GHz pulsed fiber Fabry-Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett.17(4), 750–752 (2005). [CrossRef]
  6. J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2 GHz,” Opt. Express15(20), 13155–13166 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13155 . [CrossRef] [PubMed]
  7. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-19-7-6155 . [CrossRef] [PubMed]
  8. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D48, 57–66 (2008). 10.1140/epjd/e2008-00099-9, URL http://dx.doi.org/10.1140/epjd/e2008-00099-9 . [CrossRef]
  9. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry-Pérot filter cavities for wide-spaced frequency combs withlarge spectral bandwidth,” Applied Physics B: Lasers and Optics96, 251–256 (2009). 10.1007/s00340-009-3374-6, URL http://dx.doi.org/10.1007/s00340-009-3374-6 . [CrossRef]
  10. G. T. Harvey and L. F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission,” Opt. Lett.18(2), 107–109 (1993). URL http://ol.osa.org/abstract.cfm?URI=ol-18-2-107 . [CrossRef] [PubMed]
  11. S. Gee, F. Quinlan, S. Ozharar, and P. Delfyett, “Simultaneous optical comb frequency stabilization and super-mode noise suppression of harmonically mode-locked semiconductor ring laser using an intracavity etalon,” IEEE Photon. Technol. Lett.17(1), 199–201 (2005). [CrossRef]
  12. M. Margalit, M. Orenstein, and H. Haus, “Injection locking of a passively mode-locked laser,” IEEE J. Quantum Electron.32(1), 155–160 (1996). [CrossRef]
  13. M. Margalit, M. Orenstein, and G. Eisenstein, “High-repetition-rate mode-locked Er-doped fiber lasers by harmonic injection locking,” Opt. Lett.20(17), 1791–1793 (1995). URL http://ol.osa.org/abstract.cfm?URI=ol-20-17-1791 . [CrossRef] [PubMed]
  14. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006). [CrossRef]
  15. D. Kielpinski, M. G. Pullen, J. Canning, M. Stevenson, P. S. Westbrook, and K. S. Feder, “Mode-locked picosecond pulse generation from an octave-spanning supercontinuum,” Opt. Express17(23), 20833–20839 (2009). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-20833 . [CrossRef] [PubMed]
  16. E. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69, 79–87 (2001). [CrossRef]
  17. R. Weill, A. Rosen, A. Gordon, O. Gat, and B. Fischer, “Critical Behavior of Light in Mode-Locked Lasers,” Phys. Rev. Lett.95(1), 013903 (2005). [CrossRef] [PubMed]
  18. H. Telle, Frequency control of semiconductor lasers, Chap. 5, pp. 137–172 (Wiley, Hoboken NJ, USA, 1996).
  19. N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs,” J. Opt. Soc. Am. B24, 1756–1770 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited