OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2740–2760

High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization

Young-Joo Hong, Shuichi Makita, Franck Jaillon, Myeong Jin Ju, Eun Jung Min, Byeong Ha Lee, Masahide Itoh, Masahiro Miura, and Yoshiaki Yasuno  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2740-2760 (2012)
http://dx.doi.org/10.1364/OE.20.002740


View Full Text Article

Enhanced HTML    Acrobat PDF (8731 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high-penetration swept-source optical coherence tomography (HP-SS-OCT) system based on a 1-μm short cavity laser is developed. Doppler OCT processing is applied, along with a custom-made numerical phase stabilization algorithm; this process does not require additional calibration hardware. Thus, our phase stabilization method is simple and can be employed in a variety of SS-OCT systems. The bidirectional blood flow and vasculature in the deep choroid was successfully imaged via two Doppler modes that use different time intervals for Doppler processing. En face projection image of squared power of Doppler shift is compared to ICGA, and the utility of our method is verified.

© 2012 OSA

OCIS Codes
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 21, 2011
Revised Manuscript: January 9, 2012
Manuscript Accepted: January 9, 2012
Published: January 23, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Young-Joo Hong, Shuichi Makita, Franck Jaillon, Myeong Jin Ju, Eun Jung Min, Byeong Ha Lee, Masahide Itoh, Masahiro Miura, and Yoshiaki Yasuno, "High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization," Opt. Express 20, 2740-2760 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2740


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” Br. Med. J.305, 678–683 (1992). [CrossRef]
  2. E. Friedman, “A hemodynamic model of the pathogenesis of age-related macular degeneration,” Am. J. Ophthalmol.124, 677–682 (1997). [PubMed]
  3. J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye. Res.21, 359–393 (2002). [CrossRef] [PubMed]
  4. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101, 529–533 (1994). [PubMed]
  5. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito and a. et, “Optical coherence tomography,” Science254, 1178–1181 (1991). [CrossRef] [PubMed]
  6. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical doppler tomography,” Opt. Lett.20, 1337–1339 (1995), http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-11-1337 . [CrossRef] [PubMed]
  7. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22, 64–66 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-1-64 . [CrossRef] [PubMed]
  8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117, 43–48 (1995). [CrossRef]
  9. G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt.3, 21–31 (1998). [CrossRef]
  10. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by fourier domain optical coherence tomography,” J. Biomed. Opt.7, 457–463 (2002). [CrossRef] [PubMed]
  11. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12, 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-3-367 . [CrossRef] [PubMed]
  12. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color doppler fourier domain optical coherence tomography,” Opt. Express11, 3116–3121 (2003), http://www.opticsinfobase.org/abstract.cfm?uri=oe-11-23-3116 . [CrossRef] [PubMed]
  13. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11, 3490–3497 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-25-3490 . [CrossRef] [PubMed]
  14. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by fourier-domain color doppler optical coherence tomography,” Opt. Lett.29, 171–173 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-2-171 . [CrossRef] [PubMed]
  15. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25, 1358–1360 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1358 . [CrossRef]
  16. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2, 1504–1513 (2011), http://www.opticsinfobase.org/abstract.cfm?uri=boe-2-6-1504 . [CrossRef] [PubMed]
  17. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16, 6008–6025 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6008 . [CrossRef] [PubMed]
  18. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25, 114–116 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-2-114 . [CrossRef]
  19. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14, 7821–7840 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821 . [CrossRef] [PubMed]
  20. Y. Ikuno and Y. Tano, “Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.50, 3876–3880 (2009). [CrossRef] [PubMed]
  21. Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina29, 1469–1473 (2009). [CrossRef] [PubMed]
  22. U. Chakravarthy, J. Evans, and P. J. Rosenfeld, “Age related macular degeneration,” Br. Med. J.340 (2010).
  23. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13, 3252–3258 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-9-3252 . [CrossRef] [PubMed]
  24. D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci.49, 4545–4552 (2008). [CrossRef] [PubMed]
  25. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography,” Opt. Express15, 6121–6139 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-10-6121 . [CrossRef] [PubMed]
  26. B. Povazay, B. Hermann, B. Hofer, V. Kají, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci.50, 1856–1863 (2009). [CrossRef]
  27. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49, 5103–5110 (2008). [CrossRef] [PubMed]
  28. Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.50, 405–413 (2009). [CrossRef]
  29. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12, 2977–2998 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2977 . [CrossRef] [PubMed]
  30. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18, 20029–20048 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-19-20029 . [CrossRef] [PubMed]
  31. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million a-scans and 4.5 Gvoxels per second,” Opt. Express18, 14685–14704 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-14-14685 . [CrossRef] [PubMed]
  32. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express19, 3044–3062 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3044 . [CrossRef] [PubMed]
  33. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13, 5483–5493 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-14-5483 . [CrossRef] [PubMed]
  34. J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based fourier domain optical doppler tomography,” Opt. Express13, 7449–7457 (2005), http://www.opticsinfobase.org/abstract.cfm?uri=oe-13-19-7449 . [CrossRef] [PubMed]
  35. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/fourier domain OCT,” Biomed. Opt. Express2, 1539–1552 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=boe-2-6-1539 . [CrossRef] [PubMed]
  36. B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid,” Opt. Express19, 20886–20903 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20886 . [CrossRef] [PubMed]
  37. S. Moon, S.-W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express18, 24395–24404 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-24-24395 . [CrossRef] [PubMed]
  38. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason.32, 458–464 (1985).
  39. V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun.208, 209–214 (2002). [CrossRef]
  40. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express13, 3931–3944 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-11-3931 . [CrossRef] [PubMed]
  41. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15, 1219–1223 (2009). [CrossRef] [PubMed]
  42. A. Tsujikawa, M. Sasahara, A. Otani, N. Gotoh, T. Kameda, D. Iwama, Y. Yodoi, H. Tamura, M. Mandai, and N. Yoshimura, “Pigment epithelial detachment in polypoidal choroidal vasculopathy” Am. J. Ophthalmol.143, 102–111 (2007). [CrossRef]
  43. M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “Three-dimensional visualization of ocular vascular pathology by optical coherence angiography in vivo,” Invest. Ophthalmol. Vis. Sci.52, 2689–2695 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (3259 KB)      QuickTime
» Media 2: MOV (3228 KB)      QuickTime
» Media 3: MOV (2155 KB)      QuickTime
» Media 4: MOV (2175 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited