OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2779–2788

Photon number resolving SiPM detector with 1 GHz count rate

M. Akiba, K. Inagaki, and K. Tsujino  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2779-2788 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2463 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate 1 GHz count rate photon detection with photon number resolution by using a multi-pixel photon counter (MPPC) and performing baseline correction. A bare MPPC chip mounted on a high-frequency circuit board is employed to increase response speed. The photon number resolving capability is investigated at high repetition rates. This capability remains at a repetition rate of 1 GHz and at rates as high as an average of 2.6 photons detected per optical pulse. The photon detection efficiencies are 16% at λ = 450 nm and 4.5% at λ = 775 nm with a dark count rate of 270 kcps and an afterpulse probability of 0.007.

© 2012 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.1240) Detectors : Arrays
(040.5160) Detectors : Photodetectors
(040.5570) Detectors : Quantum detectors
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:

Original Manuscript: October 12, 2011
Revised Manuscript: December 2, 2011
Manuscript Accepted: December 19, 2011
Published: January 23, 2012

M. Akiba, K. Inagaki, and K. Tsujino, "Photon number resolving SiPM detector with 1 GHz count rate," Opt. Express 20, 2779-2788 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Bacchetta, D. Bisello, F. Broz, M. Catuozzo, Y. Gotra, E. Guschin, A. Lacaita, N. Malakhov, Y. Musienko, P. Nicolosi, A. Paccagnella, E. Pace, D. Pantano, Z. Sadygov, P. Villoresi, and F. Zappa, “MRS detectors with high gain for registration of weak visible and UV light fluxes,” Nucl. Instrum. Meth. A387(1-2), 225–230 (1997). [CrossRef]
  2. A. V. Akindinov, A. N. Martemianov, P. A. Polozov, V. M. Golovin, and E. A. Grigoriev, “New results on MRS APDs,” Nucl. Instrum. Meth. A387(1-2), 231–234 (1997). [CrossRef]
  3. A. N. Otte, J. Barral, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, R. Mirzoyan, E. Popova, and M. Teshima, “A test of silicon photomultipliers as readout for PET,” Nucl. Instrum. Meth. A545(3), 705–715 (2005). [CrossRef]
  4. A. N. Otte, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, G. Lutz, R. Mirzoyan, E. Popova, R. H. Richter, L. W. J. Struder, and M. Teshima, “Prospects of Using Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC,” IEEE Trans. Nucl. Sci.53(2), 636–640 (2006). [CrossRef]
  5. C. Piemonte, “A new Silicon Photomultiplier structure for blue light detection,” Nucl. Instrum. Meth. A568(1), 224–232 (2006). [CrossRef]
  6. M. Song, E. Won, and T. H. Yoon, “Large dynamic range photon detector with a temperature-stabilized Si-based multi-pixel photon counter,” Opt. Express15(25), 17099–17105 (2007). [CrossRef] [PubMed]
  7. G. Zhang, X. Hu, R. Yang, C. Zhang, K. Liang, and D. Han, “Fast identification of trace substance by single-photon detection of characteristic Raman scatterings with gated coincidence technique and multipixel photon counters,” Appl. Opt.49(14), 2601–2605 (2010). [CrossRef]
  8. E. Grigoriev, A. Akindinov, M. Breitenmoser, S. Buono, E. Charbon, C. Niclass, I. Desforges, and R. Rocca, “Silicon photomultipliers and their bio-medical applications,” Nucl. Instrum. Meth. A571(1-2), 130–133 (2007). [CrossRef]
  9. P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express15(22), 14539–14549 (2007). [CrossRef] [PubMed]
  10. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011). [CrossRef] [PubMed]
  11. R. H. Hadfield, “A single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009). [CrossRef]
  12. A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennett, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett.94(23), 231113 (2009). [CrossRef]
  13. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics2(5), 302–306 (2008). [CrossRef]
  14. S. Seifert, H. T. van Dam, J. Huizenga, R. Vinke, P. Dendooven, H. Löhner, and D. R. Schaart, “Simulation of Silicon Photomultiplier Signals,” IEEE Trans. Nucl. Sci.56(6), 3726–3733 (2009). [CrossRef]
  15. G. Bondarenko, P. Buzhan, B. Dolgoshein, V. Golovin, E. Guschin, A. Ilyin, V. Kaplin, A. Karakash, R. Klanner, V. Pokachalov, E. Popova, and K. Smirnov, “Limited Geiger-mode microcell silicon photodiode: new results,” Nucl. Instrum. Meth. A442(1-3), 187–192 (2000). [CrossRef]
  16. P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, E. Popova, and S. Smirnov, “Silicon photomultiplier and its possible application,” Nucl. Instrum. Meth. A504(1-3), 48–52 (2003). [CrossRef]
  17. V. Golovin and V. Saveliev, “Novel type of avalanche photodetector with Geiger mode operation,” Nucl. Instrum. Meth. A518(1-2), 560–564 (2004). [CrossRef]
  18. A. Persson, A. Khaplanov, and B. Cederwall, “A prototype detector module for combined PET/CT or combined photon counting/standard CT based on SiPM technology,” in IEEE Nucl. Sci. Symp. Conf. Rec., 3503–3507 (2009).
  19. M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, “Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature,” Opt. Express17(19), 16885–16897 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited