OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2789–2805

Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry

P. C. Diemoz, A. Bravin, and P. Coan  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2789-2805 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Various X-ray phase-contrast imaging techniques have been developed and applied over the last twenty years in different domains, such as material sciences, biology and medicine. However, no comprehensive inter-comparison exists in the literature. We present here a theoretical study that compares three among the most used techniques: propagation-based imaging (PBI), analyzer-based imaging (ABI) and grating interferometry (GI). These techniques are evaluated in terms of signal-to-noise ratio, figure of merit and spatial resolution. Both area and edge signals are considered. Dependences upon the object properties (absorption, phase shift) and the experimental acquisition parameters (energy, system point-spread function etc.) are derived and discussed. The results obtained from this analysis can be used as the reference for determining the most suitable technique for a given application.

© 2012 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(110.2990) Imaging systems : Image formation theory
(110.4980) Imaging systems : Partial coherence in imaging
(110.7440) Imaging systems : X-ray imaging

ToC Category:
Imaging Systems

Original Manuscript: October 17, 2011
Manuscript Accepted: November 30, 2011
Published: January 23, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

P. C. Diemoz, A. Bravin, and P. Coan, "Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry," Opt. Express 20, 2789-2805 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999).
  2. U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett.6(8), 155–156 (1965). [CrossRef]
  3. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med.2(4), 473–475 (1996). [CrossRef] [PubMed]
  4. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibility of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995). [CrossRef]
  5. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996). [CrossRef]
  6. E. Förster, K. Goetz, and P. Zaumseil, “Double crystal diffractometry for the characterization of targets for laser fusion experiments,” Krist. Tech.15(8), 937–945 (1980). [CrossRef]
  7. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmur, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997). [CrossRef] [PubMed]
  8. A. Bravin, “Exploiting the X-ray refraction contrast with an analyser: the state of the art,” J. Phys. D Appl. Phys.36(10A), A24–A29 (2003). [CrossRef]
  9. C. David, B. Nöhammer, H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett.81(17), 3287–3289 (2002). [CrossRef]
  10. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005). [CrossRef] [PubMed]
  11. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006). [CrossRef]
  12. A. Olivo, K. Ignatyev, P. R. T. Munro, and R. D. Speller, “Noninterferometric phase-contrast images obtained with incoherent x-ray sources,” Appl. Opt.50(12), 1765–1769 (2011). [CrossRef] [PubMed]
  13. E. Castelli, M. Tonutti, F. Arfelli, R. Longo, E. Quaia, L. Rigon, D. Sanabor, F. Zanconati, D. Dreossi, A. Abrami, E. Quai, P. Bregant, K. Casarin, V. Chenda, R. H. Menk, T. Rokvic, A. Vascotto, G. Tromba, and M. A. Cova, “Mammography with synchrotron radiation: first clinical experience with phase-detection technique,” Radiology259(3), 684–694 (2011). [CrossRef] [PubMed]
  14. P. Coan, F. Bamberg, P. C. Diemoz, A. Bravin, K. Timpert, E. Mützel, J. G. Raya, S. Adam-Neumair, M. F. Reiser, and C. Glaser, “Characterization of osteoarthritic and normal human patella cartilage by computed tomography X-ray phase-contrast imaging: a feasibility study,” Invest. Radiol.45(7), 437–444 (2010). [PubMed]
  15. G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Mueller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface7(53), 1665–1676 (2010). [CrossRef] [PubMed]
  16. E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005). [CrossRef] [PubMed]
  17. M. R. Teague, “Irradiance moments - their propagation and use for unique retrieval of phase,” J. Opt. Soc. Am.72(9), 1199–1209 (1982). [CrossRef]
  18. T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express16(5), 3223–3241 (2008). [CrossRef] [PubMed]
  19. P. Coan, E. Pagot, S. Fiedler, P. Cloetens, J. Baruchel, and A. Bravin, “Phase-contrast X-ray imaging combining free space propagation and Bragg diffraction,” J. Synchrotron Radiat.12(2), 241–245 (2005). [CrossRef] [PubMed]
  20. Y. I. Nesterets, P. Coan, T. E. Gureyev, A. Bravin, P. Cloetens, and S. W. Wilkins, “On qualitative and quantitative analysis in analyser-based imaging,” Acta Crystallogr. A62(4), 296–308 (2006). [CrossRef] [PubMed]
  21. T. E. Gureyev and S. W. Wilkins, “Regimes of X-ray phase-contrast imaging with perfect crystals,” Nuovo Cimento D19(2-4), 545–552 (1997). [CrossRef]
  22. K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D Appl. Phys.37(19), 2746–2750 (2004). [CrossRef]
  23. R. Tanuma and M. Ohsawa, “Submicron-resolved X-ray topography using asymmetric-reflection magnifiers,” Spectrochim. Acta, Part B59(10-11), 1549–1555 (2004). [CrossRef]
  24. P. C. Diemoz, P. Coan, I. Zanette, A. Bravin, S. Lang, C. Glaser, and T. Weitkamp, “A simplified approach for computed tomography with an X-ray grating interferometer,” Opt. Express19(3), 1691–1698 (2011). [CrossRef] [PubMed]
  25. A. L. Evans, The Evaluation of Medical Images (Adam Hilger Ltd, Bristol, 1981).
  26. F. Arfelli, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. Dalla Palma, M. Di Michiel, R. Longo, A. Olivo, S. Pani, D. Pontoni, P. Poropat, M. Prest, A. Rashevsky, G. Tromba, and A. Vacchi, “Mammography of a phantom and breast tissue with synchrotron radiation and a linear-array silicon detector,” Radiology208(3), 709–715 (1998). [PubMed]
  27. S. Webb, The Physics of Medical Imaging (Institute of Physics Publishing, Bristol, 1988).
  28. J. M. Boone, K. K. Lindfors, V. N. Cooper, and J. A. Seibert, “Scatter/primary in mammography: comprehensive results,” Med. Phys.27(10), 2408–2416 (2000). [CrossRef] [PubMed]
  29. J. Persliden and G. A. Carlsson, “Scatter rejection by air gaps in diagnostic radiology. Calculations using a Monte Carlo collision density method and consideration of molecular interference in coherent scattering,” Phys. Med. Biol.42(1), 155–175 (1997). [CrossRef] [PubMed]
  30. M. Sanchez del Rio, C. Ferrero, and V. Mocella, “Computer simulations of bent perfect crystal diffraction profiles,” Proc. SPIE3152, 312–323 (1997), http://www.esrf.eu/UsersAndScience/Experiments/TBS/ SciSoft/xop2.3 . [CrossRef]
  31. T. Matsushita and H. Hashizume, “X-Ray monochromators,” in Handbook on Synchrotron Radiation, E. Koch, ed. (North Holland Publishing Company, New York, 1983), pp. 261–314.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited