OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2806–2813

Modified detector tomography technique applied to a superconducting multiphoton nanodetector

J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 2806-2813 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1858 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental method to characterize multi-photon detectors with a small overall detection efficiency. We do this by separating the nonlinear action of the multiphoton detection event from linear losses in the detector. Such a characterization is a necessary step for quantum information protocols with single and multiphoton detectors and can provide quantitative information to understand the underlying physics of a given detector. This characterization is applied to a superconducting multiphoton nanodetector, consisting of an NbN nanowire with a bowtie-shaped subwavelength constriction. Depending on the bias current, this detector has regimes with single and multiphoton sensitivity. We present the first full experimental characterization of such a detector.

© 2012 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(270.4180) Quantum optics : Multiphoton processes
(270.5290) Quantum optics : Photon statistics

ToC Category:

Original Manuscript: October 24, 2011
Revised Manuscript: December 21, 2011
Manuscript Accepted: January 6, 2012
Published: January 23, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, "Modified detector tomography technique applied to a superconducting multiphoton nanodetector," Opt. Express 20, 2806-2813 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001). [PubMed]
  2. A. Feito, J. S. Lundeen, H. Coldenstrodt-Ronge, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Measuring measurement: theory and practice,” New J. Phys.11, 093038 (2009).
  3. J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, C. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys.5, 27–30 (2008).
  4. M. K. Akhlaghi, A. H. Majedi, and J. S. Lundeen, “Nonlinearity in Single Photon Detection : Modeling and Quantum Tomography,” Opt. Express19, 21305 (2011). [PubMed]
  5. M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys.108, 014507 (2010).
  6. D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett.10, 2977–81 (2010). [PubMed]
  7. G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79, 705 (2001).
  8. I. Afek, O. Ambar, and Y. Silberberg, “High-NOON states by mixing quantum and classical light,” Science328, 879–81 (2010). [PubMed]
  9. A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Goltsman, and B. M. Voronov, “Constriction-limited detection efficiency of superconducting nanowire single-photon detectors,” Appl. Phys. Lett.90, 101110 (2007).
  10. A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Noetzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett.97, 151108 (2010).
  11. J. S. Lundeen, K. L. Pregnell, A. Feito, B. J. Smith, W. Mauerer, C. Silberhorn, J. Eisert, M. B. Plenio, and I. A. Walmsley, “A proposed testbed for detector tomography,” J. Mod. Optic.56, 432 (2009).
  12. G. Brida, L. Ciavarella, I. P. Degiovanni, M. Genovese, L. Lolli, G. Mingolla, F. Piacentini, M. Rajteri, E. Taralli, and M. G. A. Paris, “Full quantum characterization of superconducting photon counters” arXiv: 1103.2991 (2011).
  13. T. Amri, “Quantum Behavior of Measurement Apparatus,” arXiv:1001.3032v2 (2011).
  14. R. J. Barlow, Statistics (Wiley, 1989).
  15. Y. Yamamoto and A. Imamoglu, Mesoscopic quantum optics (Wiley, 1999).
  16. D. Achilles, C. Silberhorn, and I. A. Walmsley, “Direct, Loss-Tolerant Characterization of Nonclassical Photon Statistics,” Phys. Rev. Lett.97, 043602 (2006) [PubMed]
  17. G. Zambra, A. Andreoni, M. Bondani, M. Gramegna, M. Genovese, G. Brida, A. Rossi, and M. G. A. Paris, “Experimental reconstruction of photon statistics without photon counting,” Phys. Rev. Lett.95, 6 (2005).
  18. A. Semenov, A. Engel, H.-W. Hübers, K. Il’in, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B47, 495–501 (2005).
  19. M. K. Akhlaghi and A. H. Majedi, “Semiempirical Modeling of Dark Count Rate and Quantum Efficiency of Superconducting Nanowire Single-Photon Detectors,” IEEE T. Appl. Supercon.19, 361–366 (2009).
  20. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Phot.2, 302–306 (2008).
  21. O. Haderka, M. Hamar, and J. Perina, “Experimental multi-photon-resolving detector using a single avalanche photodiode,” Eur. Phys. J. D28, 11 (2003).
  22. P. P. Rohde, J. G. Webb, E. H. Huntington, and T. C. Ralph, “Photon number projection using non-number-resolving detectors,” New J. Phys.9, 233–233 (2007).
  23. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol’tsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Optic.56, 13 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited