OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 2876–2880

Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators

Yueh-Chun Lai, Cheng-Kuang Chen, Yu-Hang Yang, and Ta-Jen Yen  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 2876-2880 (2012)
http://dx.doi.org/10.1364/OE.20.002876


View Full Text Article

Enhanced HTML    Acrobat PDF (2081 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on Maxwell’s equations and Mie theory, strong sub-wavelength artificial magnetic and electric dipole resonances can be excited within dielectric resonators, and their resonant frequencies can be tailored simply by scaling the size of the dielectric resonators. Therefore, in this work we hybridize commercially available zirconia and alumina structures to harvest their individual artificial magnetic and electric response simultaneously, presenting a negative refractive index medium (NRIM). Comparing with the conventional NRIM constructed by metallic structures, the demonstrated all-dielectric NRIM possesses low-loss and high-symmetry advantages, thus benefiting practical applications in communication components, perfect lenses, invisible cloaking and other novel electromagnetic devices.

© 2012 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(350.4010) Other areas of optics : Microwaves
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: December 19, 2011
Manuscript Accepted: January 11, 2012
Published: January 23, 2012

Citation
Yueh-Chun Lai, Cheng-Kuang Chen, Yu-Hang Yang, and Ta-Jen Yen, "Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators," Opt. Express 20, 2876-2880 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-2876


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  2. N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect,” Science302(5650), 1537–1540 (2003). [CrossRef] [PubMed]
  3. J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, B. I. Wu, J. A. Kong, and M. Chen, “Cerenkov radiation in materials with negative permittivity and permeability,” Opt. Express11(7), 723–734 (2003). [CrossRef] [PubMed]
  4. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  6. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  7. Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow’ trapping and releasing at telecommunication wavelength,” Phys. Rev. Lett.102(5), 056801 (2009). [CrossRef]
  8. M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variation,” Phys. Rev. B75(23), 235114 (2007). [CrossRef]
  9. J. B. Pendry, “A chiral route to negative refraction,” Science306(5700), 1353–1355 (2004). [CrossRef] [PubMed]
  10. T.-C. Yang, Y.-H. Yang, and T.-J. Yen, “An anisotropic negative refractive index medium operated at multiple-angle incidences,” Opt. Express17(26), 24189–24197 (2009). [CrossRef] [PubMed]
  11. S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.14(15), 4035–4044 (2002).
  12. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett.98(15), 157403 (2007). [CrossRef] [PubMed]
  13. Y. J. Lai, C. K. Chen, and T. J. Yen, “Creating negative refractive identity via single-dielectric resonators,” Opt. Express17(15), 12960–12970 (2009). [CrossRef] [PubMed]
  14. Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008). [CrossRef]
  15. O. G. Vendik and M. S. Gashinova, “Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix,” in Proceedings of the 34 European Microwave Conference (2004), pp. 1209–1212.
  16. J. Wang, Z. Xu, Z. Yu, X. Wei, Y. Yang, J. Wang, and S. Qu, “Experimental realization of all-dielectric composit cubes/rods left-handed metamaterial,” J. Appl. Phys.109(8), 084918 (2011). [CrossRef]
  17. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002). [CrossRef]
  18. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler. Metallösungen,” Ann. Phys.25(4), 377–445 (1908). [CrossRef]
  19. T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express16(24), 19850–19864 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited