OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3091–3097

Nanoscale optical reinforcement for enhanced reversible holography

Pengfei Wu, Sam Qunhui Sun, Sarfaraz Baig, and Michael R. Wang  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 3091-3097 (2012)
http://dx.doi.org/10.1364/OE.20.003091


View Full Text Article

Enhanced HTML    Acrobat PDF (2669 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a nanoscale optical reinforcement concept for reversible holographic recording. The bone-muscle-like mechanism enables enhancement of holographic grating formation due to the collective alignment of liquid crystal (LC) molecules nearby photo-reconfigurable polymer backbones. The LC fluidity facilitates the ease of polymer chain transformation during the holographic recording while the polymer network stabilizes the LC collective orientation and the consequential optical enhancement after the recording. As such, the holographic recording possesses both long-term persistence and real-time rewritability.

© 2012 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.2870) Holography : Holographic display
(210.4770) Optical data storage : Optical recording
(160.5335) Materials : Photosensitive materials

ToC Category:
Holography

History
Original Manuscript: December 2, 2011
Revised Manuscript: January 14, 2012
Manuscript Accepted: January 15, 2012
Published: January 25, 2012

Citation
Pengfei Wu, Sam Qunhui Sun, Sarfaraz Baig, and Michael R. Wang, "Nanoscale optical reinforcement for enhanced reversible holography," Opt. Express 20, 3091-3097 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-3091


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Haw, “Holographic data storage: The light fantastic,” Nature422(6932), 556–558 (2003). [CrossRef] [PubMed]
  2. R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature383(6600), 505–508 (1996). [CrossRef]
  3. P. Wu, Z. Liu, J. J. Yang, A. Flores, and M. R. Wang, “Wavelength-multiplexed submicron holograms for disk-compatible data storage,” Opt. Express15(26), 17798–17804 (2007). [CrossRef] [PubMed]
  4. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008). [CrossRef] [PubMed]
  5. H. I. Bjelkhagen and E. Mirlis, “Color holography to produce highly realistic three-dimensional images,” Appl. Opt.47(4), A123–A133 (2008). [CrossRef] [PubMed]
  6. C. Hsieh, O. Momtahan, A. Karbaschi, and A. Adibi, “Compact Fourier-transform volume holographic spectrometer for diffuse source spectroscopy,” Opt. Lett.30(8), 836–838 (2005). [CrossRef] [PubMed]
  7. P. Dean, M. R. Dickinson, and D. P. West, “Depth-resolved holographic imaging through scattering media by use of a photorefractive polymer composite device in the near infrared,” Opt. Lett.30(15), 1941–1943 (2005) (References and further reading may be available for this article. To view references and further reading you must purchase this article.). [CrossRef] [PubMed]
  8. M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. J. Turek, K. Jeong, and D. D. Nolte, “Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express17(14), 11834–11849 (2009). [CrossRef] [PubMed]
  9. P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett.78(11), 1490–1492 (2001). [CrossRef]
  10. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt.35(14), 2389–2398 (1996). [CrossRef] [PubMed]
  11. K. Meerholz, B. L. Volodin, B. Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature371(6497), 497–500 (1994). [CrossRef]
  12. E. Mecher, F. Gallego-Gómez, H. Tillmann, H.-H. Hörhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature418(6901), 959–964 (2002). [CrossRef] [PubMed]
  13. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004). [CrossRef] [PubMed]
  14. Y. H. Cho and Y. Kawakami, “A novel process for holographic polymer dispersed liquid crystal system via simultaneous photo-polymerization and siloxane network formation,” Silicon Chem.3(5), 219–227 (2007). [CrossRef]
  15. J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays25(5), 177–186 (2004). [CrossRef]
  16. E. H. Kim, J. Y. Woo, and B. K. Kim, “LC dependent electro-optical properties of holographic polymer dispersed liquid crystals,” Displays29(5), 482–486 (2008). [CrossRef]
  17. Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys.95(3), 810–815 (2004). [CrossRef]
  18. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci.30(1), 83–115 (2000). [CrossRef]
  19. J. F. Rabek, Photochemistry and Photophysics (CRC, Boca Raton, FL, 1990), 120–141.
  20. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science268(5219), 1873–1875 (1995). [CrossRef] [PubMed]
  21. P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, W. Chen, and W. Huang, “Transient biphotonic holographic grating in photoisomerizative azo materials,” Phys. Rev. B57(7), 3874–3880 (1998). [CrossRef]
  22. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev.102(11), 4139–4176 (2002). [CrossRef] [PubMed]
  23. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, “Nonvolatile grating in an azobenzene polymer with optimized molecular reorientation,” Appl. Phys. Lett.78(9), 1189–1191 (2001). [CrossRef]
  24. L. Nikolova, T. Todorov, V. Dragostinova, T. Petrova, and N. Tomova, “Polarization reflection holographic gratings in azobenzene-containing gelatine films,” Opt. Lett.27(2), 92–94 (2002). [CrossRef] [PubMed]
  25. J. Luc, K. Bouchouit, R. Czaplicki, J.-L. Fillaut, and B. Sahraoui, “Study of surface relief gratings on azo organometallic films in picosecond regime,” Opt. Express16(20), 15633–15639 (2008). [CrossRef] [PubMed]
  26. K. Matczyszyn, S. Bartkiewicz, and B. Sahraoui, “A new holographic system: liquid crystal doped with photochromic molecules,” Opt. Mater.20(1), 57–61 (2002). [CrossRef]
  27. J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, “Photoaddressable polymers: a new class of materials for optical data storage and holographic memories,” Jpn. J. Appl. Phys.38(Part 1, No. 3B), 1835–1836 (1999). [CrossRef]
  28. Y. Sabi, M. Yamamoto, H. Watanabe, T. Bieringer, D. Haarer, R. Hagen, S. G. Kostromine, and H. Berneth, “Photoaddressable polymers for rewritable optical disc systems,” Jpn. J. Appl. Phys.40(Part 1, No. 3B), 1613–1618 (2001). [CrossRef]
  29. A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys.42(Part 1, No. 7A), 4406–4410 (2003). [CrossRef]
  30. X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. (Deerfield Beach Fla.)17(3), 370–374 (2005). [CrossRef]
  31. X. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett.74(25), 3791–3793 (1999). [CrossRef]
  32. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys.31(Part 1, No. 7), 2155–2164 (1992). [CrossRef]
  33. G. Lee, J. Lee, J. Kim, U. Hwang, C. Oh, B. Park, Y. Lee, and S. Paek, “Liquid crystal alignment by Holographic surface relief grating inscribed on azo-polymer film,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)424(1), 75–83 (2004). [CrossRef]
  34. H. Choi, J. W. Wu, H.-J. Chang, and B. Park, “Holographically generated twisted nematic liquid crystal gratings,” Appl. Phys. Lett.88(2), 021905 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited