OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3110–3117

Line-by-line pulse shaping with spectral resolution below 890 MHz

John T. Willits, Andrew M. Weiner, and Steven T. Cundiff  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 3110-3117 (2012)
http://dx.doi.org/10.1364/OE.20.003110


View Full Text Article

Enhanced HTML    Acrobat PDF (2886 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Line-by-line pulse shaping is demonstrated on a 890 MHz repetition rate mode-locked titanium sapphire laser. The high resolution pulse shaper is based on a virtual imaged phased array (VIPA) with a free spectral range of 25 GHz. For our implementation, the mask repeats every VIPA free spectral range, which corresponds to every 28 comb lines. Individual frequency modes from the laser are also resolved using the same VIPA paired with a diffraction grating to achieve a resolution of 357 MHz. Several output waveforms are compared with simulation to understand differences with the ideal case.

© 2012 OSA

OCIS Codes
(320.0320) Ultrafast optics : Ultrafast optics
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Ultrafast Optics

History
Original Manuscript: December 14, 2011
Revised Manuscript: January 18, 2012
Manuscript Accepted: January 20, 2012
Published: January 25, 2012

Citation
John T. Willits, Andrew M. Weiner, and Steven T. Cundiff, "Line-by-line pulse shaping with spectral resolution below 890 MHz," Opt. Express 20, 3110-3117 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-3110


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000). [CrossRef]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000). [CrossRef] [PubMed]
  3. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology (Springer, 2005).
  4. Z. Jiang, D.-S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett.30(12), 1557–1559 (2005). [CrossRef] [PubMed]
  5. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010). [CrossRef]
  6. J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Theory of rapid-update line-by-line pulse shaping,” Opt. Express16(1), 315–327 (2008). [CrossRef] [PubMed]
  7. R. P. Scott, N. K. Fontaine, J. P. Heritage, and S. J. B. Yoo, “Dynamic optical arbitrary waveform generation and measurement,” Opt. Express18(18), 18655–18670 (2010). [CrossRef] [PubMed]
  8. R.P. Scott, N. K Fontaine, D.J. Geisler, T. He, J.P. Heritage, and S.J.B. Yoo, “Demonstration of dynamic optical arbitrary waveform generation with 5-ns record lengths and 33-ps features,” CLEO 2011, paper CWH5 (2011).
  9. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445(7128), 627–630 (2007). [CrossRef] [PubMed]
  10. A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett.24(14), 996–998 (1999). [CrossRef] [PubMed]
  11. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007). [CrossRef]
  12. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett.21(5), 366–368 (1996). [CrossRef] [PubMed]
  13. S. Xiao, A. M. Weiner, and C. Lin, “Experimental and theoretical study of hyperfine WDM demulitplexer performance ssing the virtually imaged phased-array (VIPA),” J. Lightwave Technol.23(3), 1456–1467 (2005). [CrossRef]
  14. T. K. Chan, J. Karp, R. Jiang, N. Alic, S. Radic, C. F. Marki, and J. E. Ford, “1092 channel 2-D array demultiplexer for ultralarge data bandwidth,” J. Lightwave Technol.25(3), 719–725 (2007). [CrossRef]
  15. S. Xiao and A. Weiner, “2-D wavelength demultiplexer with potential for >/= 1000 channels in the C-band,” Opt. Express12(13), 2895–2902 (2004). [CrossRef] [PubMed]
  16. S. Xiao and A. M. Weiner, “An eight-channel hyperfine wavelength demultiplexer using a virtually imaged phased-array (VIPA),” IEEE Photon. Technol. Lett.17(2), 372–374 (2005). [CrossRef]
  17. G. H. Lee and A. M. Weiner, “Programmable optical pulse burst manipulation using a virtually imaged phased array (VIPA) based Fourier transform pulse shaper,” J. Lightwave Technol.23(11), 3916–3923 (2005). [CrossRef]
  18. V. R. Supradeepa, E. Hamidi, D. E. Leaird, and A. M. Weiner, “New aspects of temporal dispersion in high resolution Fourier pulse shaping: A quantitative description with virtually imaged phased array pulse shapers,” J. Opt. Soc. Am. B27(9), 1833–1844 (2010). [CrossRef]
  19. S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron.40(4), 420–426 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited