OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3144–3151

Spontaneous decay of CdSe / ZnS core-shell quantum dots at the air-dielectric interface

Lei Zhu, Sarath Samudrala, Nikolai Stelmakh, and Michael Vasilyev  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 3144-3151 (2012)
http://dx.doi.org/10.1364/OE.20.003144


View Full Text Article

Enhanced HTML    Acrobat PDF (1055 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report measurements of the fluorescence decay times of CdSe/ZnS core-shell quantum dots at the air-dielectric interface for several dielectrics with different refractive indices. The results are in agreement with a simple theory that accounts for the impact of the refractive index on the density of states and magnitude of the vacuum field, as well as for the local-field correction inside the quantum dot. The results suggest that, by embedding the quantum dots into a high-index dielectric material, one can reduce the spontaneous decay time to sub-nanosecond scale while preserving high quantum efficiency.

© 2012 OSA

OCIS Codes
(260.2510) Physical optics : Fluorescence
(270.5580) Quantum optics : Quantum electrodynamics
(160.4236) Materials : Nanomaterials

ToC Category:
Quantum Optics

History
Original Manuscript: September 7, 2011
Revised Manuscript: January 16, 2012
Manuscript Accepted: January 19, 2012
Published: January 26, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Lei Zhu, Sarath Samudrala, Nikolai Stelmakh, and Michael Vasilyev, "Spontaneous decay of CdSe / ZnS core-shell quantum dots at the air-dielectric interface," Opt. Express 20, 3144-3151 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-3144


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Ch. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett.86(8), 1502–1505 (2001). [CrossRef] [PubMed]
  2. Ph. Grangier, B. Sanders, and J. Vuckovic, eds., special issue “Focus on single photons on demand,” New J. Phys.6(1), 85 (2004).
  3. S. G. Lukishova, L. J. Bissell, C. R. Stroud, and R. W. Boyd, “Room-temperature single photon sources with definite circular and linear polarizations,” Opt. Spectrosc.108(3), 417–424 (2010). [CrossRef]
  4. A. Efros, “Fine structure and polarization properties of band-edge excitons in semiconductor nanocrystals,” Nanocrystal Quantum Dots (CRC Press, 2010), Chap. 1.
  5. X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009). [CrossRef] [PubMed]
  6. J. Hollingsworth and V. Klimov, “Soft chemical synthesis and manipulation of semiconductor nanocrystals,” Nanocrystal Quantum Dots (CRC Press, 2010), Chap. 1
  7. Z. Jacob, I. Smolyaninov, and E. E. Narimanov, “Single photon gun: radiative decay engineering with metamaterials,” International Quantum Electronics Conference, Baltimore, MD, May 31–June 5, 2009, post-deadline paper IPDB2.
  8. Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010). [CrossRef]
  9. S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of exited atoms in absorbing dielectrics,” J. Phys. B29(16), 3763–3781 (1996). [CrossRef]
  10. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007). [CrossRef]
  11. M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B79(4), 045301 (2009). [CrossRef]
  12. Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C114(16), 7269–7273 (2010). [CrossRef]
  13. J.-Y. Zhang, X.-Y. Wang, and M. Xiao, “Modification of spontaneous emission from CdSe/CdS quantum dots in the presence of a semiconductor interface,” Opt. Lett.27(14), 1253–1255 (2002). [CrossRef] [PubMed]
  14. X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett.93(10), 107403 (2004). [CrossRef] [PubMed]
  15. K. Liu, T. A. Schmedake, K. Daneshvar, and R. Tsu, “Interaction of CdSe/ZnS quantum dots: among themselves and with matrices,” Microelectron. J.38(6-7), 700–705 (2007). [CrossRef]
  16. E. Yablonovitch, T. J. Gmitter, and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures,” Phys. Rev. Lett.61(22), 2546–2549 (1988). [CrossRef] [PubMed]
  17. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B101(46), 9463–9475 (1997). [CrossRef]
  18. C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B106(31), 7619–7622 (2002). [CrossRef]
  19. Ch. B. Walsh and E. I. Franses, “Ultrathin PMMA films spin-coated from toluene solutions,” Thin Solid Films429(1-2), 71–76 (2003). [CrossRef]
  20. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am.67(12), 1607 (1977). [CrossRef]
  21. W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun.20(2), 195–199 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited