OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3158–3165

Integrated fiber-coupled launcher for slow plasmon-polariton waves

Giuseppe Della Valle and Stefano Longhi  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 3158-3165 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1063 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and numerically demonstrate an integrated fiber-coupled launcher for slow surface plasmon-polaritons. The device is based on a novel plasmonic mode-converter providing efficient power transfer from the fast to the slow modes of a metallic nanostripe. Total coupling efficiency with standard single-mode fiber approaching 30% (including ohmic losses) has been numerically predicted for a 25-µm long gold-based device operating at 1.55 µm telecom wavelength.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optics at Surfaces

Original Manuscript: October 6, 2011
Revised Manuscript: December 11, 2011
Manuscript Accepted: January 18, 2012
Published: January 26, 2012

Giuseppe Della Valle and Stefano Longhi, "Integrated fiber-coupled launcher for slow plasmon-polariton waves," Opt. Express 20, 3158-3165 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  2. B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol.12(1), 6–18 (1994). [CrossRef]
  3. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 4094–4106 (1994). [CrossRef] [PubMed]
  4. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997). [CrossRef] [PubMed]
  5. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  6. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010). [CrossRef] [PubMed]
  7. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000). [CrossRef]
  8. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  9. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.)22(45), 5120–5124 (2010). [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi and K. V. Nerkararyan, “Analytic description of channel plasmon polaritons,” Opt. Lett.34(13), 2039–2041 (2009). [CrossRef] [PubMed]
  12. F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzales, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007). [CrossRef]
  13. A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011). [CrossRef] [PubMed]
  14. X. Li, L. Huang, Q. Tan, B. Bai, and G. Jin, “Integrated plasmonic semi-circular launcher for dielectric-loaded surface plasmon-polariton waveguide,” Opt. Express19(7), 6541–6548 (2011). [CrossRef] [PubMed]
  15. J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express18(5), 5314–5319 (2010). [CrossRef] [PubMed]
  16. S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun.255(1-3), 51–56 (2005). [CrossRef]
  17. P. S. Chung and M. G. F. Wilson, “Optical mode conversione using chirped gratings,” Electron. Lett.17(1), 14–15 (1981). [CrossRef]
  18. C.-X. Shi and T. Okoshi, “Mode conversion based on the periodic coupling by a reflective fiber grating,” Opt. Lett.17(23), 1655–1657 (1992). [CrossRef] [PubMed]
  19. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969). [CrossRef]
  20. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  21. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express15(17), 10869–10877 (2007). [CrossRef] [PubMed]
  22. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75(24), 245405 (2007). [CrossRef]
  23. M. J. Weber, Handbook of Optical Materials, (CRC Press LLC, 2003).
  24. L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media, (Pergamon, 1984).
  25. Comsol Multiphysics ver. 3.5.
  26. A. Schleunitz and H. Schift, “Fabrication of 3D nanoimprint stamps with continuous reliefs using dose-modulated electron beam lithography and thermal reflow,” J. Micromech. Microeng.20(9), 095002 (2010). [CrossRef]
  27. A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J. Opt. A, Pure Appl. Opt.11(11), 114001 (2009). [CrossRef]
  28. F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng.73, 397–404 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited