OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3192–3199

Efficient transportation of nano-sized particles along slotted photonic crystal waveguide

Pin-Tso Lin and Po-Tsung Lee  »View Author Affiliations

Optics Express, Vol. 20, Issue 3, pp. 3192-3199 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1473 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design a slotted photonic crystal waveguide (S-PhCW) and numerically propose that it can efficiently transport polystyrene particle with diameter as small as 50 nm in a 100 nm slot. Excellent optical confinement and slow light effect provided by the photonic crystal structure greatly enhance the optical force exerted on the particle. The S-PhCW can thus transport the particle with optical propulsion force as strong as 5.3 pN/W, which is over 10 times stronger than that generated by the slotted strip waveguide (S-SW). In addition, the vertical optical attraction force induced in the S-PhCW is over 2 times stronger than that of the S-SW. Therefore, the S-PhCW transports particles not only efficiently but also stably. We anticipate this waveguide structure will be beneficial for the future lab-on-chip development

© 2012 OSA

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: November 2, 2011
Revised Manuscript: January 1, 2012
Manuscript Accepted: January 2, 2012
Published: January 26, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Pin-Tso Lin and Po-Tsung Lee, "Efficient transportation of nano-sized particles along slotted photonic crystal waveguide," Opt. Express 20, 3192-3199 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  3. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express13(18), 6956–6963 (2005). [CrossRef] [PubMed]
  4. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett.17(11), 772–774 (1992). [CrossRef] [PubMed]
  5. M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett.84(21), 4236–4238 (2004). [CrossRef]
  6. V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett.86(3), 031106 (2005). [CrossRef]
  7. T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett.86(17), 174101 (2005). [CrossRef]
  8. M. J. Guffey, R. L. Miller, S. K. Gray, and N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett.11(10), 4058–4066 (2011). [CrossRef] [PubMed]
  9. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999). [CrossRef]
  10. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997). [CrossRef]
  11. A. Rahmani and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express14(13), 6353–6358 (2006). [CrossRef] [PubMed]
  12. M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett.89(25), 253114 (2006). [CrossRef]
  13. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett.21(21), 1768–1770 (1996). [CrossRef] [PubMed]
  14. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express15(22), 14322–14334 (2007). [CrossRef] [PubMed]
  15. B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express18(20), 21053–21061 (2010). [CrossRef] [PubMed]
  16. A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett.9(3), 1182–1188 (2009). [CrossRef] [PubMed]
  17. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009). [CrossRef] [PubMed]
  18. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  19. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  20. T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature383(6602), 699–702 (1996). [CrossRef]
  21. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D. Appl. Phys.40(9), 2666–2670 (2007). [CrossRef]
  22. A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett.92(8), 083501 (2008). [CrossRef]
  23. A. Di Falco, L. O'Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostructures6(1), 38–41 (2008). [CrossRef]
  24. P. T. Lin and P. T. Lee, “All-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide,” Opt. Lett.36(3), 424–426 (2011). [CrossRef] [PubMed]
  25. S. Y. Shi, C. H. Chen, and D. W. Prather, “Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers,” J. Opt. Soc. Am. A21(9), 1769–1775 (2004). [CrossRef] [PubMed]
  26. K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express13(1), 1–7 (2005). [CrossRef] [PubMed]
  27. R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express16(6), 3712–3726 (2008). [CrossRef] [PubMed]
  28. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett.10(1), 99–104 (2010). [CrossRef] [PubMed]
  29. A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology19(4), 045704 (2008). [CrossRef] [PubMed]
  30. J. D. Jackson, Classical Electrodynamics (Wiley, 1975), Chap. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited