OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3250–3260

Study of optical phase transduction on localized surface plasmon resonance for ultrasensitive detection

Chung-Tien Li, How-foo Chen, Ieng-Wai Un, Hsin-Cheng Lee, and Ta-Jen Yen  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 3250-3260 (2012)
http://dx.doi.org/10.1364/OE.20.003250


View Full Text Article

Enhanced HTML    Acrobat PDF (1178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Localized surface plasmon resonance (LSPR) has shown its remarkable applications in biosensing, bioimaging, and nanophotonics. Unlike surface plasmon polariton (SPP), the current studies regarding LSPR as biosensor were restricted in probing the extinction spectra, and thus limit the performance in biosensing and bioimaging. Here, we reveal that optical phase of LSPR provides an acute change at resonance beyond extinction spectra, which permits an ultra-high sensitivity in phase interrogation. We found that optical phases of LSPR show two orders of magnitude higher sensing resolution than extinction spectra among the same nanostructures. For the first time, we demonstrated the feasibility of probing optical phase transduction in LSPR for biosensing, and the sensitivity is superior to not only the extinction spectra among the same metallic nanostructures, but also the LSPR sensors among the current literatures. In summary, the exploitation of LSPR by phase interrogation essentially complements the sensitivity insufficiency of LSPR, and provides new access to understanding and using the rich physics of LSPR.

© 2012 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(130.6010) Integrated optics : Sensors
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Sensors

History
Original Manuscript: November 9, 2011
Manuscript Accepted: November 11, 2011
Published: January 27, 2012

Citation
Chung-Tien Li, How-foo Chen, Ieng-Wai Un, Hsin-Cheng Lee, and Ta-Jen Yen, "Study of optical phase transduction on localized surface plasmon resonance for ultrasensitive detection," Opt. Express 20, 3250-3260 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-3250


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  3. T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D. K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, “Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip,” Anal. Chem.78(18), 6465–6475 (2006). [CrossRef] [PubMed]
  4. N. Félidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett.82(18), 3095–3097 (2003). [CrossRef]
  5. A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc.127(7), 2264–2271 (2005). [CrossRef] [PubMed]
  6. E. M. Larsson, C. Langhammer, I. Zorić, and B. Kasemo, “Nanoplasmonic probes of catalytic reactions,” Science326(5956), 1091–1094 (2009). [CrossRef] [PubMed]
  7. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett.32(21), 3092–3094 (2007). [CrossRef] [PubMed]
  8. X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010). [CrossRef] [PubMed]
  9. I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005). [CrossRef] [PubMed]
  10. D. S. Wagner, N. A. Delk, E. Y. Lukianova-Hleb, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts,” Biomaterials31(29), 7567–7574 (2010). [CrossRef] [PubMed]
  11. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  12. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009). [CrossRef] [PubMed]
  13. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuator B-Chem.54(1-2), 3–15 (1999). [CrossRef]
  14. C. Ziegler, “Cantilever-based biosensors,” Anal. Bioanal. Chem.379(7-8), 946–959 (2004). [CrossRef] [PubMed]
  15. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  16. C. Langhammer, Z. Yuan, I. Zorić, and B. Kasemo, “Plasmonic properties of supported Pt and Pd nanostructures,” Nano Lett.6(4), 833–838 (2006). [CrossRef] [PubMed]
  17. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett.7(5), 1256–1263 (2007). [CrossRef] [PubMed]
  18. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006). [CrossRef] [PubMed]
  19. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008). [CrossRef] [PubMed]
  20. N. Verellen, P. Van Dorpe, C. J. Huang, K. Lodewijks, G. A. E. Vandenbosch, L. Lagae, and V. V. Moshchalkov, “Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing,” Nano Lett.11(2), 391–397 (2011). [CrossRef] [PubMed]
  21. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  22. S. G. Nelson, K. S. Johnston, and S. S. Yee, “ High sensitivity surface plasmon resonace sensor based on phase detection,” Sens. Actuator B-Chem.35(1-3), 187–191 (1996). [CrossRef]
  23. V. E. Kochergin, A. A. Beloglazov, M. V. Valeiko, and P. I. Nikitin, “Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications,” Quantum Electron.28(5), 444–448 (1998). [CrossRef]
  24. P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuator B-Chem.54(1-2), 43–50 (1999). [CrossRef]
  25. H. F. Chen, Non-linear optics Laboratory, National Yang Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, and C. C. Gong, C. J. Chao, C. T. Li, and T. J. Yen are preparing a manuscript to be called “Parabolic mirror surface plasmon polariton biosensor capable of large tunable light-excitation angles with stationary light source and interrogation assembly system.”
  26. G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett.105(25), 255501 (2010). [CrossRef] [PubMed]
  27. V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. J. García de Abajo, “Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method,” Adv. Mater. (Deerfield Beach Fla.)20(22), 4288–4293 (2008). [CrossRef]
  28. P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  29. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem.91(3), 634–643 (1987). [CrossRef]
  30. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.19(24), 2062–2064 (1994). [CrossRef] [PubMed]
  31. M. Quinten, A. Heilmann, and A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys, B-Lasers Opt.68(4), 707–712 (1999). [CrossRef]
  32. K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, and X. H. N. Xu, “In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos,” ACS Nano1(2), 133–143 (2007). [CrossRef] [PubMed]
  33. S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(1), 016607 (2011). [CrossRef] [PubMed]
  34. T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B103(13), 2394–2401 (1999). [CrossRef]
  35. D. Kim, “Nanostructure-Based Localized Surface Plasmon Resonance Biosensors,” in Optical Guided-wave Chemical and Biosensors I, M. Zourob, A. Lakhtakia, (Springer 2009), pp. 183–206.
  36. S. J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, “Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles,” Opt. Lett.29(12), 1390–1392 (2004). [CrossRef] [PubMed]
  37. E. M. Hicks, S. L. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005). [CrossRef] [PubMed]
  38. S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: selective suppression of extinction,” Phys. Rev. Lett.86(20), 4688–4691 (2001). [CrossRef] [PubMed]
  39. B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett.34(4), 401–403 (2009). [CrossRef] [PubMed]
  40. Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008). [CrossRef]
  41. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B70(12), 125113 (2004). [CrossRef]
  42. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003). [CrossRef] [PubMed]
  43. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  44. G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett.3(7), 935–938 (2003). [CrossRef]
  45. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005). [CrossRef] [PubMed]
  46. Y. Choi, Y. Park, T. Kang, and L. P. Lee, “Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy,” Nat. Nanotechnol.4(11), 742–746 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited