OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3311–3324

Highly confined surface imaging by solid immersion total internal reflection fluorescence microscopy

Lin Wang, Cvetelin Vasilev, Daniel P. Canniffe, Luke R. Wilson, C. Neil Hunter, and Ashley J. Cadby  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 3311-3324 (2012)
http://dx.doi.org/10.1364/OE.20.003311


View Full Text Article

Enhanced HTML    Acrobat PDF (4007 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the use of a high-refractive-index aplanatic solid immersion lens (ASIL) in total internal reflection fluorescence (TIRF) microscopy. This new solid immersion total internal reflection fluorescence (SITIRF) microscopy allows highly confined surface imaging with a significantly reduced imaging depth compared with conventional TIRF microscopy. We explore the application of a high refractive index, low optical dispersion material zirconium dioxide in the SITIRF microscope and also introduce a novel system design which enables the SITIRF microscope to work either in the epi-fluorescence or TIRF modes with variable illumination angles. We use both synthetic and biological samples to demonstrate that the imaging depth in the SITIRF microscope can be confined to a few tens of nanometers. SITIRF microscopy has the advantages of performing highly selective imaging and high-resolution high-contrast imaging. Potential applications in biological imaging and future developments of SITIRF microscopy are proposed.

© 2012 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(240.0240) Optics at surfaces : Optics at surfaces
(240.6690) Optics at surfaces : Surface waves
(260.6970) Physical optics : Total internal reflection

ToC Category:
Microscopy

History
Original Manuscript: November 23, 2011
Revised Manuscript: January 5, 2012
Manuscript Accepted: January 8, 2012
Published: January 27, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Lin Wang, Cvetelin Vasilev, Daniel P. Canniffe, Luke R. Wilson, C. Neil Hunter, and Ashley J. Cadby, "Highly confined surface imaging by solid immersion total internal reflection fluorescence microscopy," Opt. Express 20, 3311-3324 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-3311


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990). [CrossRef]
  2. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett.65(4), 388–390 (1994). [CrossRef]
  3. J. Zhang, C. W. See, and M. G. Somekh, “Imaging performance of widefield solid immersion lens microscopy,” Appl. Opt.46(20), 4202–4208 (2007). [CrossRef] [PubMed]
  4. L. Wang, M. C. Pitter, and M. G. Somekh, “Wide-field high-resolution solid immersion fluorescence microscopy applying an aplanatic solid immersion lens,” Appl. Opt.49(31), 6160–6169 (2010). [CrossRef]
  5. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999). [CrossRef]
  6. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000). [CrossRef]
  7. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000). [CrossRef] [PubMed]
  8. L. Wang, M. C. Pitter, and M. G. Somekh, “Wide-field high-resolution structured illumination solid immersion fluorescence microscopy,” Opt. Lett.36(15), 2794–2796 (2011). [CrossRef] [PubMed]
  9. A. L. Stout and D. Axelrod, “Evanescent field excitation of fluorescence by epi-illumination microscopy,” Appl. Opt.28(24), 5237–5242 (1989). [CrossRef] [PubMed]
  10. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol.89(1), 141–145 (1981). [CrossRef] [PubMed]
  11. J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng.10(1), 311–338 (2008). [CrossRef] [PubMed]
  12. T. Yanagida, Y. Sako, and S. Minoghchi, “Single-molecule imaging of EGFR signalling on the surface of living cells,” Nat. Cell Biol.2(3), 168–172 (2000). [CrossRef] [PubMed]
  13. J. Z. Rappoport and S. M. Simon, “Real-time analysis of clathrin-mediated endocytosis during cell migration,” J. Cell Sci.116(5), 847–855 (2003). [CrossRef] [PubMed]
  14. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984). [CrossRef] [PubMed]
  15. P. Török and F. J. Kao, Optical Imaging and Microscopy: Techniques and Advanced Systems,87 of Springer series in optical sciences (Springer, 2007).
  16. C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc.234(1), 38–46 (2009). [CrossRef] [PubMed]
  17. A. L. Mattheyses and D. Axelrod, “Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence,” J. Biomed. Opt.11(1), 014006 (2006). [CrossRef] [PubMed]
  18. J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt.38(4), 724–732 (1999). [CrossRef] [PubMed]
  19. R. Wannemacher, A. Pack, and M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B68(2), 225–232 (1999). [CrossRef]
  20. C. Liu, T. Weigel, and G. Schweiger, “Structural resonances in a dielectric sphere on a dielectric surface illuminated by an evanescent wave,” Opt. Commun.185(4-6), 249–261 (2000). [CrossRef]
  21. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett.75(26), 4064–4066 (1999). [CrossRef]
  22. M. Liberton, R. Howard Berg, J. Heuser, R. Roth, and H. B. Pakrasi, “Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803,” Protoplasma227(2-4), 129–138 (2006). [CrossRef] [PubMed]
  23. D. Schneider, E. Fuhrmann, I. Scholz, W. R. Hess, and P. L. Graumann, “Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes,” BMC Cell Biol.39(1), 8–39 (2007). [CrossRef] [PubMed]
  24. C. Aldridge, E. Spence, M. A. Kirkilionis, L. Frigerio, and C. Robinson, “Tat-dependent targeting of Rieske iron-sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium Synechocystis PCC6803,” Mol. Microbiol.70(1), 140–150 (2008). [CrossRef] [PubMed]
  25. D. Woitzik, J. Weckesser, and U. J. Jurgens, “Isolation and characterization of cell-wall components of the unicellular cyanobacterium Synechococcus sp. PCC 6307,” J. Gen. Microbiol.134, 619–627 (1988).
  26. J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt.12(1), 014010 (2007). [CrossRef] [PubMed]
  27. I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and thermal characterization of natural (Sepia officinalis) melanin,” Photochem. Photobiol.59(4), 455–462 (1994). [CrossRef] [PubMed]
  28. J. A. Steyer and W. Almers, “Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy,” Biophys. J.76(4), 2262–2271 (1999). [CrossRef] [PubMed]
  29. S. Saffarian and T. Kirchhausen, “Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane,” Biophys. J.94(6), 2333–2342 (2008). [CrossRef] [PubMed]
  30. K. Stock, R. Sailer, W. S. L. Strauss, M. Lyttek, R. Steiner, and H. Schneckenburger, “Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device,” J. Microsc.211(1), 19–29 (2003). [CrossRef] [PubMed]
  31. G. D. Byrne, M. C. Pitter, J. Zhang, F. H. Falcone, S. Stolnik, and M. G. Somekh, “Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles,” J. Microsc.231(1), 168–179 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited