OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3345–3352

Sub-diffraction thin-film sensing with planar terahertz metamaterials

Withawat Withayachumnankul, Hungyen Lin, Kazunori Serita, Charan M. Shah, Sharath Sriram, Madhu Bhaskaran, Masayoshi Tonouchi, Christophe Fumeaux, and Derek Abbott  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 3345-3352 (2012)
http://dx.doi.org/10.1364/OE.20.003345


View Full Text Article

Enhanced HTML    Acrobat PDF (1095 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Planar metamaterials consisting of subwavelength resonators have been recently proposed for thin dielectric film sensing in the terahertz frequency range. Although the thickness of the dielectric film can be very small compared with the wavelength, the required area of sensed material is still determined by the diffraction-limited spot size of the terahertz beam excitation. In this article, terahertz near-field sensing is utilized to reduce the spot size. By positioning the metamaterial sensing platform close to the sub-diffraction terahertz source, the number of excited resonators, and hence minimal film area, are significantly reduced. As an additional advantage, a reduction in the number of excited resonators decreases the inter-cell coupling strength, and consequently the resonance Q factor is remarkably increased. The experimental results show that the resonance Q factor is improved by more than a factor of two compared to the far-field measurement. Moreover, for a film with a thickness of λ/375 the minimal area can be as small as 0.2λ × 0.2λ. The success of this work provides a platform for future metamaterial-based sensors for biomolecular detection.

© 2012 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Metamaterials

History
Original Manuscript: December 19, 2011
Revised Manuscript: January 21, 2012
Manuscript Accepted: January 23, 2012
Published: January 27, 2012

Citation
Withawat Withayachumnankul, Hungyen Lin, Kazunori Serita, Charan M. Shah, Sharath Sriram, Madhu Bhaskaran, Masayoshi Tonouchi, Christophe Fumeaux, and Derek Abbott, "Sub-diffraction thin-film sensing with planar terahertz metamaterials," Opt. Express 20, 3345-3352 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-3345


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B, Condens. Matter41, 12140–12149 (1990). [CrossRef]
  2. B. M. Fischer, H. Helm, and P. U. Jepsen, “Chemical recognition with broadband THz spectroscopy,” Proc. IEEE95, 1592–1604 (2007). [CrossRef]
  3. W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Material thickness optimization for transmission-mode terahertz time-domain spectroscopy,” Opt. Express16, 7382–7396 (2008). [CrossRef] [PubMed]
  4. W. Withayachumnankul, B. M. Fischer, H. Lin, and D. Abbott, “Uncertainty in terahertz time-domain spectroscopy measurement,” J. Opt. Soc. Am. B25, 1059–1072 (2008). [CrossRef]
  5. W. Withayachumnankul, “Limitation in thin-film detection with transmission-mode terahertz time-domain spectroscopy,” Arxiv preprint arXiv:1111.3498 (2011).
  6. J. F. O’Hara, W. Withayachumnankul, and I. A. I. Al-Naib, “A review on thin-film sensing with terahertz waves,” J. Infrared Millim. Terahertz Waves (2012), (in press).
  7. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett.91, 062511 (2007). [CrossRef]
  8. W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J.1, 99–118 (2009). [CrossRef]
  9. I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. (2012), (in press).
  10. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett.91, 184102 (2007).
  11. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16, 1786–1795 (2008). [CrossRef] [PubMed]
  12. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19, 6312–6319 (2011). [CrossRef] [PubMed]
  13. H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater.23, 3197–3201 (2011). [CrossRef] [PubMed]
  14. C. Jansen, I. A. I. Al-Naib, N. Born, and M. Koch, “Terahertz metasurfaces with high Q-factors,” Appl. Phys. Lett.98, 051109 (2011). [CrossRef]
  15. I. Sersic, M. Frimmer, E. Verhagen, and A. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett.103, 213902 (2009). [CrossRef]
  16. W. Withayachumnankul, K. Jaruwongrungsee, C. Fumeaux, and D. Abbott, “Metamaterial-inspired multichannel thin-film sensor,” IEEE Sensors J. (2012). (In press).
  17. W. Withayachumnankul, G. M. Png, X. X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S.-Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE95, 1528–1558 (2007). [CrossRef]
  18. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.47, 2075–2084 (1999). [CrossRef]
  19. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B23, 1822–1835 (2006). [CrossRef]
  20. K. Serita, S. Mizuno, H. Murakami, I. Kawayama, M. Tonouchi, Y. Takahashi, M. Yoshimura, Y. Kitaoka, and Y. Mori, “Development of laser scanning terahertz imaging system using organic nonlinear optical crystal,” in “35th International Conference on Infrared, Millimeter, and Terahertz Waves,” (Rome, Italy, 2010). DOI:. [CrossRef]
  21. H. Lin, C. Fumeaux, B. M. Fischer, and D. Abbott, “Modelling of sub-wavelength THz sources as Gaussian apertures,” Opt. Express18, 17672–17683 (2010). [CrossRef] [PubMed]
  22. H. Lin, C. Fumeaux, B. S.-Y. Ung, and D. Abbott, “Comprehensive modeling of THz microscope with a sub-wavelength source,” Opt. Express19, 5327–5338 (2011). [CrossRef] [PubMed]
  23. M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett.25, 911–913 (2000). [CrossRef]
  24. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro-optic properties of the organic salt 4-N, N-dimethylamino-4′-N′-methyl-stilbazolium tosylate,” Appl. Phys. Lett.69, 13–15 (1996). [CrossRef]
  25. S. Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett.94, 064102 (2009). [CrossRef]
  26. H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett.97, 261909 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited