OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 3 — Jan. 30, 2012
  • pp: 3353–3366

Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography

Lian Duan, Masahiro Yamanari, and Yoshiaki Yasuno  »View Author Affiliations


Optics Express, Vol. 20, Issue 3, pp. 3353-3366 (2012)
http://dx.doi.org/10.1364/OE.20.003353


View Full Text Article

Enhanced HTML    Acrobat PDF (3227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An automated chorio-scleral interface (CSI) detection algorithm based on polarization sensitive optical coherence tomography (PS-OCT) is presented. This algorithm employs a two-step scheme based on the phase retardation variation detected by PS-OCT. In the first step, a rough CSI segmentation is implemented to distinguish the choroid and sclera by using depth-oriented second derivative of the phase retardation. Second, the CSI is further finely defined as the intersection of lines fitted to the phase retardation in the choroid and sclera. This algorithm challenges the current back-scattering intensity based CSI segmentation approaches that are not fully based on anatomical and morphological evidence, and provides a rational segmentation method for the morphological investigation of the choroid. Applications of this algorithm are demonstrated on in vivo posterior images acquired by a PS-OCT system with 1-μm probe.

© 2012 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(110.4500) Imaging systems : Optical coherence tomography
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 22, 2011
Revised Manuscript: January 18, 2012
Manuscript Accepted: January 19, 2012
Published: January 27, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Lian Duan, Masahiro Yamanari, and Yoshiaki Yasuno, "Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography," Opt. Express 20, 3353-3366 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-3-3353


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophth. Vis. Sci.41, 3117–3123 (2000).
  2. D.-Y. Yu and S. J. Cringle, “Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease,” Prog. Retin. Eye Res.20, 175–208 (2001). [CrossRef] [PubMed]
  3. L. M. Parver, C. Auker, and D. O. Carpenter, “Choroidal blood flow as a heat dissipating mechanism in the macula,” Am. J. Ophthalmol.89, 641–646 (1980). . [PubMed]
  4. J. W. Kiel and W. A. van Heuven, “Ocular perfusion pressure and choroidal blood flow in the rabbit.” Invest. Ophth. Vis. Sci.36, 579–585 (1995).
  5. K. Polak, A. Luksch, F. Berisha, G. Fuchsjaeger-Mayrl, S. Dallinger, and L. Schmetterer, “Altered nitric oxide system in patients with Open-Angle glaucoma,” Arch. Ophthalmol.125, 494–498 (2007). [CrossRef] [PubMed]
  6. T. Kubota, J. B. Jonas, and G. O. Naumann, “Decreased choroidal thickness in eyes with secondary angle closure glaucoma. an aetiological factor for deep retinal changes in glaucoma?” Br. J. Ophthalmol.77, 430–432 (1993). [CrossRef] [PubMed]
  7. C. W. Spraul, G. E. Lang, and H. E. Grossniklaus, “Morphometric analysis of the choroid, bruch’s membrane, and retinal pigment epithelium in eyes with age-related macular degeneration.” Invest. Ophth. Vis. Sci.37, 2724–2735 (1996).
  8. F. John V, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol.7, 626–634 (2003). [CrossRef]
  9. M. Destro and C. A. Puliafito, “Indocyanine green videoangiography of choroidal neovascularization,” Ophthalmology96, 846–853 (1989). . [PubMed]
  10. D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, M. Hope-Ross, and D. R. Orlock, “Digital indocyanine-green videoangiography of occult choroidal neovascularization,” Ophthalmology101, 1727–1735; discussion 1735–1737 (1994). . [PubMed]
  11. D. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology111, 1344–1351 (2004). [CrossRef] [PubMed]
  12. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991). [CrossRef] [PubMed]
  13. A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66, 239–303 (2003). [CrossRef]
  14. M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113, 325–332 (1995). [CrossRef] [PubMed]
  15. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology112, 1584–1589 (1994). . [PubMed]
  16. J. G. Fujimoto, W. Drexler, J. S. Schuman, and C. K. Hitzenberger, “Optical coherence tomography (OCT) in ophthalmology: Introduction,” Opt. Express17, 3978–3979 (2009). [CrossRef] [PubMed]
  17. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz oct for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express19, 3044–3062 (2011). [CrossRef] [PubMed]
  18. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24, 1221–1223 (1999). [CrossRef]
  19. A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117, 43–48 (1995). [CrossRef]
  20. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11, 889–894 (2003). [CrossRef] [PubMed]
  21. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and fourier domain optical coherence tomography,” Opt. Express11, 2183–2189 (2003). [CrossRef] [PubMed]
  22. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28, 2067–2069 (2003). [CrossRef] [PubMed]
  23. R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146, 496–500 (2008). [CrossRef] [PubMed]
  24. T. Fujiwara, Y. Imamura, R. Margolis, J. S. Slakter, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes,” Am. J. Ophthalmol.148, 445–450 (2009). [CrossRef] [PubMed]
  25. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050Mm versus 800Mm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12, 041211 (2007). [CrossRef]
  26. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15, 6121–6139 (2007). [CrossRef] [PubMed]
  27. D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophth. Vis. Sci.49, 4545–4552 (2008). [CrossRef]
  28. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophth. Vis. Sci.49, 5103–5110 (2008). [CrossRef]
  29. Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophth. Vis. Sci.50, 405–413 (2009). [CrossRef]
  30. D. Cabrera DeBuc, “A review of algorithms for segmentation of retinal image data using optical coherence tomography,” in “Image Segmentation,” (InTech, 2011).
  31. M. R. Hee, “Optical coherence tomography of the eye,” Ph.D. thesis, Massachusetts Institute of Technology (1997).
  32. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation,” Opt. Express18, 19413–19428 (2010). [CrossRef] [PubMed]
  33. I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in oct images and quantitative evaluation of performances,” Pattern Recogn.44, 1590–1603 (2011). [CrossRef]
  34. V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm oct in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express3, 86–103 (2012). [CrossRef]
  35. J. de Boer, T. Milner, and J. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett.24, 300–302 (1999). [CrossRef]
  36. M. Hee, D. Huang, E. Swanson, and J. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B: Opt. Phys.9, 903–908 (1992). [CrossRef]
  37. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt.7, 350–358 (2002). [CrossRef] [PubMed]
  38. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett.24, 537–539 (1999). [CrossRef]
  39. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express13, 10217–10229 (2005). [CrossRef] [PubMed]
  40. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt.13, 014013 (2008). [CrossRef] [PubMed]
  41. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express16, 16410–16422 (2008). [CrossRef] [PubMed]
  42. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophth. Vis. Sci.47, 5487–5494 (2006). [CrossRef]
  43. M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-sourceoptical coherence tomography with1-μm probe,” Opt. Express17, 12385–12396 (2009). [CrossRef] [PubMed]
  44. M. Yamanari, S. Makita, Y. Lim, and Y Yasuno, “Full-range polarization-sensitiveswept-source optical coher-encetomography by simultaneous transversaland spectral modulation,” Opt. Express18, 13964–13980 (2010). [CrossRef] [PubMed]
  45. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express14, 6502–6515 (2006). [CrossRef] [PubMed]
  46. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16, 5892–5906 (2008). [CrossRef] [PubMed]
  47. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express18, 854–876 (2010). [CrossRef] [PubMed]
  48. Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2392–2402 (2011). [CrossRef] [PubMed]
  49. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14, 7821–7840 (2006). [CrossRef] [PubMed]
  50. M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys.29, 432–441 (2007). [CrossRef]
  51. Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express18, 21293–21307 (2010). [CrossRef] [PubMed]
  52. Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061705 (2010). [CrossRef]
  53. R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147, 811–815 (2009). [CrossRef] [PubMed]
  54. V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using cirrus hd optical coherence tomography,” Am. J. Ophthalmol.150, 325–329.e1 (2010). [CrossRef] [PubMed]
  55. G. Maguluri, M. Mujat, B. H. Park, K. H. Kim, W. Sun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, T. C. Chen, and J. F. de Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Express15, 16808–16817 (2007). [CrossRef] [PubMed]
  56. M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with slo/oct in combination with 3d motion correction on a cellular level,” Opt. Express18, 13935–13944 (2010). [CrossRef] [PubMed]
  57. L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express19, 16330–16345 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited