OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3401–3407

Modulation cancellation method for isotope 18O/16O ratio measurements in water

Vincenzo Spagnolo, Lei Dong, Anatoliy A. Kosterev, and Frank K. Tittel  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 3401-3407 (2012)
http://dx.doi.org/10.1364/OE.20.003401


View Full Text Article

Enhanced HTML    Acrobat PDF (825 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The application of an innovative spectroscopic balancing technique to measure the isotope 18O/16O ratio in water vapor is reported. Quartz enhanced photoacoustic spectroscopy has been employed as the absorption sensing technique. Two isotope absorption lines with the same quantum numbers, with very close lower energy levels, have been selected to limit the sensitivity to temperature variations and guarantee identical broadening as well as relaxation properties. The sensitivity in measuring the deviation from a standard sample δ18O is 1.4‰, in 200 sec of integration time.

© 2012 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Sensors

History
Original Manuscript: October 17, 2011
Revised Manuscript: November 21, 2011
Manuscript Accepted: December 5, 2011
Published: January 30, 2012

Citation
Vincenzo Spagnolo, Lei Dong, Anatoliy A. Kosterev, and Frank K. Tittel, "Modulation cancellation method for isotope 18O/16O ratio measurements in water," Opt. Express 20, 3401-3407 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3401


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Gianfrani, G. Gagliardi, M. van Burgel, and E. Kerstel, “Isotope analysis of water by means of near infrared dual-wavelength diode laser spectroscopy,” Opt. Express11(13), 1566–1576 (2003). [CrossRef] [PubMed]
  2. E. Kerstel, G. Gagliardi, L. Gianfrani, H. Meijer, R. van Trigt, and R. Ramaker, “Determination of the 2H/1H, 17O/16O, and 18O/16O isotope ratios in water by means of tunable diode laser spectroscopy at 1.39 μm,” Spectrochim. Acta [A]58(11), 2389–2396 (2002). [CrossRef]
  3. J. B. McManus, D. D. Nelson, J. H. Shorter, R. Jimenez, S. Herndon, S. Saleska, and M. Zahniser, “A high precision pulsed quantum cascade laser spectrometer for measurements of stable isotopes of carbon dioxide,” J. Mod. Opt.52(16), 2309–2321 (2005). [CrossRef]
  4. D. R. Bowling, S. D. Sargent, B. D. Tanner, and J. R. Ehleringer, “Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange,” Agric. For. Meteorol.118(1-2), 1–19 (2003). [CrossRef]
  5. T. J. Griffis, J. M. Baker, S. D. Sargent, B. D. Tanner, and J. Zhang, “Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques,” Agric. For. Meteorol.124(1-2), 15–29 (2004). [CrossRef]
  6. F. K. Tittel, D. Weidmann, C. Oppenheimer, and L. Gianfrani, “Laser absorption spectroscopy for volcano monitoring,” Opt. Photon. News17(5), 24–31 (2006). [CrossRef]
  7. D. D. Nelson, J. B. Mcmanus, S. C. Herndon, M. S. Zahniser, B. Tuzson, and L. Emmenegger, “New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 μm pulsed quantum cascade laser,” Appl. Phys. B90(2), 301–309 (2008). [CrossRef]
  8. L. Croizé, D. Mondelain, C. Camy-Peyret, C. Janssen, M. Lopez, M. Delmotte, and M. Schmidt, “Isotopic composition and concentration measurements of atmospheric CO2 with a diode laser making use of correlations between non-equivalent absorption cells,” Appl. Phys. B101(1-2), 411–421 (2010). [CrossRef]
  9. D. A. Long, M. Okumura, C. E. Miller, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios,” Appl. Phys. B105(2), 471–477 (2011). [CrossRef]
  10. A. A. Kosterev and R. F. Curl, “Modulation cancellation method in laser spectroscopy,” International Patent WO 2007/056772 A2 (2007).
  11. V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method for measurements of small temperature differences in a gas,” Opt. Lett.36(4), 460–462 (2011). [CrossRef] [PubMed]
  12. V. Spagnolo, L. Dong, A. A. Kosterev, D. Thomazy, J. H. Doty, and F. K. Tittel, “Modulation cancellation method in laser spectroscopy,” Appl. Phys. B103(3), 735–742 (2011). [CrossRef]
  13. A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of Quartz Tuning Forks in Spectroscopic Gas Sensing,” Rev. Sci. Instrum.76(4), 043105 (2005). [CrossRef]
  14. J. R. de Laeter, J. K. Bohlke, P. De Bievre, H. Hidaka, H. S. Peiser, K. J. R. Rosman, and P. D. P. Taylor, “Atomic weights of the elements. Review 2000 (IUPAC Technical Report),” Pure Appl. Chem.75(6), 683–799 (2003). [CrossRef]
  15. M. Barbour, “Stable oxygen isotope composition of plant tissue: a review,” Funct. Plant Biol.34(2), 83–94 (2007). [CrossRef]
  16. K. K. Andersen, N. Azuma, J. M. Barnola, M. Bigler, P. Biscaye, N. Caillon, J. Chappellaz, H. B. Clausen, D. Dahl-Jensen, H. Fischer, J. Flückiger, D. Fritzsche, Y. Fujii, K. Goto-Azuma, K. Grønvold, N. S. Gundestrup, M. Hansson, C. Huber, C. S. Hvidberg, S. J. Johnsen, U. Jonsell, J. Jouzel, S. Kipfstuhl, A. Landais, M. Leuenberger, R. Lorrain, V. Masson-Delmotte, H. Miller, H. Motoyama, H. Narita, T. Popp, S. O. Rasmussen, D. Raynaud, R. Rothlisberger, U. Ruth, D. Samyn, J. Schwander, H. Shoji, M. L. Siggard-Andersen, J. P. Steffensen, T. Stocker, A. E. Sveinbjörnsdóttir, A. Svensson, M. Takata, J. L. Tison, T. Thorsteinsson, O. Watanabe, F. Wilhelms, and J. W. White, “High-resolution record of Northern Hemisphere climate extending into the last interglacial period,” Nature431(7005), 147–151 (2004). [CrossRef] [PubMed]
  17. P. Bergamaschi, M. Schupp, and G. W. Harris, “High-precision direct measurements of 13CH4/12CH4 and 12CH3D/12CH4 ratios in atmospheric methane sources by means of a long-path tunable diode laser absorption spectrometer,” Appl. Opt.33(33), 7704–7716 (1994). [CrossRef] [PubMed]
  18. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.110(9-10), 533–572 (2009). [CrossRef]
  19. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B100(3), 627–635 (2010). [CrossRef]
  20. N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, “Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor,” Appl. Phys. B94(4), 673–680 (2009). [CrossRef]
  21. P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B102(2), 313–329 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited