OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3456–3466

Analysis of a distributed fiber-optic temperature sensor using single-photon detectors

Shellee D. Dyer, Michael G. Tanner, Burm Baek, Robert H. Hadfield, and Sae Woo Nam  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 3456-3466 (2012)
http://dx.doi.org/10.1364/OE.20.003456


View Full Text Article

Enhanced HTML    Acrobat PDF (1142 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a high-accuracy distributed fiber-optic temperature sensor using superconducting nanowire single-photon detectors and single-photon counting techniques. Our demonstration uses inexpensive single-mode fiber at standard telecommunications wavelengths as the sensing fiber, which enables extremely low-loss experiments and compatibility with existing fiber networks. We show that the uncertainty of the temperature measurement decreases with longer integration periods, but is ultimately limited by the calibration uncertainty. Temperature uncertainty on the order of 3 K is possible with spatial resolution of the order of 1 cm and integration period as small as 60 seconds. Also, we show that the measurement is subject to systematic uncertainties, such as polarization fading, which can be reduced with a polarization diversity receiver.

© 2012 OSA

OCIS Codes
(040.3780) Detectors : Low light level
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(190.5650) Nonlinear optics : Raman effect
(120.4825) Instrumentation, measurement, and metrology : Optical time domain reflectometry

ToC Category:
Sensors

History
Original Manuscript: November 9, 2011
Manuscript Accepted: January 10, 2012
Published: January 30, 2012

Citation
Shellee D. Dyer, Michael G. Tanner, Burm Baek, Robert H. Hadfield, and Sae Woo Nam, "Analysis of a distributed fiber-optic temperature sensor using single-photon detectors," Opt. Express 20, 3456-3466 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3456


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept wavelength interferometry,” in Optical Fiber Sensors, Technical Digest (CD) (Optical Society of America, 2006) paper ThE42.
  2. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett.21(13), 569–570 (1985). [CrossRef]
  3. L. Thévenaz, “Review and progress in distributed fiber sensing,” in Optical Fiber Sensors, Technical Digest (CD) (Optical Society of America, 2006) paper ThC1.
  4. P. E. Sanders, “Fiber-optic sensors: playing both sides of the energy equation,” Opt. Photon. News22(1), 36–42 (2011). [CrossRef]
  5. A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, “One centimeter spatial resolution temperature measurements in a nuclear reactor using Rayleigh scatter in optical fiber,” IEEE Sens. J.8(7), 1375–1380 (2008). [CrossRef]
  6. G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol.18(10), 3211–3218 (2007). [CrossRef]
  7. M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett.99(20), 201110 (2011). [CrossRef]
  8. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009). [CrossRef]
  9. R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Advances in high resolution distributed temperature sensing using the time-correlated single photon counting technique,” IEE Proc., Optoelectron.144(3), 183–188 (1997). [CrossRef]
  10. R. Stierlin, J. Ricka, B. Zysset, R. Bättig, H. P. Weber, T. Binkert, and W. J. Borer, “Distributed fiber-optic temperature sensor using single photon counting detection,” Appl. Opt.26(8), 1368–1370 (1987). [CrossRef] [PubMed]
  11. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A75(2), 023803 (2007). [CrossRef]
  12. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010). [CrossRef]
  13. S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92(6), 061116 (2008). [CrossRef]
  14. J. R. Taylor, An Introduction to Error Analysis (University Science Books, 1997), Chap. 3.
  15. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express13(6), 2236–2244 (2005). [CrossRef] [PubMed]
  16. I. Mandelbaum, M. Bolshtyansky, T. F. Heinz, and A. R. Hight Walker, “Method for measuring the Raman gain tensor in optical fibers,” J. Opt. Soc. Am. B23(4), 621–627 (2006). [CrossRef]
  17. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16(14), 10750–10761 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited