OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3563–3571

Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 3563-3571 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1073 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The internal energy flow in a light beam can be divided into the “orbital” and “spin” parts, associated with the spatial and polarization degrees of freedom of light. In contrast to the orbital one, experimental observation of the spin flow seems problematic because it is converted into an orbital flow upon tight focusing of the beam, usually applied for energy flow detection by means of the mechanical action upon probe particles. We propose a two-beam interference technique that results in an appreciable level of spin flow in moderately focused beams and detection of the orbital motion of probe particles within a field where the transverse energy circulation is associated exclusively with the spin flow. This result can be treated as the first demonstration of mechanical action of the spin flow of a light field.

© 2012 OSA

OCIS Codes
(260.2160) Physical optics : Energy transfer
(260.5430) Physical optics : Polarization
(350.4990) Other areas of optics : Particles
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Physical Optics

Original Manuscript: December 7, 2011
Revised Manuscript: January 23, 2012
Manuscript Accepted: January 23, 2012
Published: January 30, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, "Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams," Opt. Express 20, 3563-3571 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Padgett and L. Allen, “The Poynting vector in Laguerre–Gaussian laser modes,” Opt. Commun. 121(1-3), 36–40 (1995). [CrossRef]
  2. L. Allen and M. J. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184(1-4), 67–71 (2000). [CrossRef]
  3. M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: ‘optical vortex’,” Opt. Spectrosc. 88(2), 260–265 (2000). [CrossRef]
  4. V. A. Pas’ko, M. S. Soskin, and M. V. Vasnetsov, “Transversal optical vortex,” Opt. Commun. 198(1-3), 49–56 (2001). [CrossRef]
  5. J. Lekner, “Phase and transport velocities in particle and electromagnetic beams,” J. Opt. A, Pure Appl. Opt. 4(5), 491–499 (2002). [CrossRef]
  6. J. Lekner, “Polarization of tightly focused laser beams,” J. Opt. A, Pure Appl. Opt. 5(1), 6–14 (2003). [CrossRef]
  7. H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt. 6(5), S404–S409 (2004). [CrossRef]
  8. A. Ya. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31(14), 2199–2201 (2006). [CrossRef] [PubMed]
  9. I. Mokhun, A. Mokhun, and J. Viktorovskaya, Singularities of the Poynting vector and the structure of optical fieldProc. SPIE 6254, 625409, 625409-10 (2006). [CrossRef]
  10. I. I. Mokhun, “Introduction to linear singular optics,” in Optical correlation techniques and applications (Bellingham: SPIE Press PM168, 2007) pp. 1–132.
  11. M. V. Berry, “Optical currents,” J. Opt. A, Pure Appl. Opt. 11(9), 094001 (2009). [CrossRef]
  12. A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011). [CrossRef]
  13. R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt. 9(3), 182–186 (2008). [CrossRef]
  14. A. Ya. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271(2), 332–348 (2007). [CrossRef]
  15. K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of nonparaxial light in free space,” Phys. Rev. A 82(6), 063825 (2010). [CrossRef]
  16. A. Ya. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE 6254, 625407, 625407-8 (2006). [CrossRef]
  17. A. Bekshaev and M. Vasnetsov, “Vortex flow of light: ‘Spin’ and ‘orbital’ flows in a circularly polarized paraxial beam,” in Twisted Photons. Applications of Light with Orbital Angular Momentum (Weinheim: Wiley-VCH, 2011), pp. 13–24.
  18. A. Ya. Bekshaev, “Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum,” J. Opt. A, Pure Appl. Opt. 11(9), 094003 (2009). [CrossRef]
  19. A. Ya. Bekshaev, “Role of azimuthal energy flows in the geometric spin Hall effect of light,” arXiv:1106.0982v1 [physics.optics] (6 Jun 2011).
  20. K. Yu. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006). [CrossRef] [PubMed]
  21. O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008). [CrossRef] [PubMed]
  22. A. Aiello, N. Lindlein, Ch. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin Hall effect of light,” Phys. Rev. Lett. 103(10), 100401 (2009). [CrossRef] [PubMed]
  23. A. Ya. Bekshaev, “Transverse energy flow and the “running” behaviour of the instantaneous field distribution of a light beam,” arXiv:1108.0784 [physics.optics] (3 Aug 2011).
  24. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002). [CrossRef] [PubMed]
  25. V. Garces-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt. 6(5), S235–S238 (2004). [CrossRef]
  26. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007). [CrossRef] [PubMed]
  27. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008). [CrossRef]
  28. A. Y. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Yu. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol. 2011, 723901 (2011). [CrossRef]
  29. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936). [CrossRef]
  30. T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt. 10(11), 115005 (2008). [CrossRef]
  31. O. V. Angelsky, N. N. Dominikov, P. P. Maksimyak, and T. Tudor, “Experimental revealing of polarization waves,” Appl. Opt. 38(14), 3112–3117 (1999). [CrossRef] [PubMed]
  32. O. V. Angelsky, S. B. Yermolenko, C. Yu. Zenkova, and A. O. Angelskaya, “Polarization manifestations of correlation (intrinsic coherence) of optical fields,” Appl. Opt. 47(29), 5492–5499 (2008). [PubMed]
  33. O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express 19(2), 660–672 (2011). [CrossRef] [PubMed]
  34. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (London, Wiley-Interscience, 1975).
  35. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (Singapore: Hackensack, NJ: World Scientific, 2006).
  36. X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010). [CrossRef] [PubMed]
  37. S. Yan, B. Yao, and M. Lei, “Comment on “optical orbital angular momentum from the curl of polarization”,” Phys. Rev. Lett. 106(18), 189301, author reply 189302 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Supplementary Material

» Media 1: AVI (17230 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited