OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3572–3579

Selecting detection wavelength of resonant cavity-enhanced photodetectors by guided-mode resonance reflectors

Kuo-Wei Lai, Yi-Shan Lee, Ying-Jhe Fu, and Sheng-Di Lin  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 3572-3579 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1262 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a novel device structure of resonant cavity-enhanced photodetector (RCE-PD). The new RCE-PD structure consists of a bottom distributed Bragg reflector (DBR), a cavity with InGaAs multiple quantum wells (MQWs) for light absorption and a top mirror of sub-wavelength grating. By changing the fill factor of the 2-D grating, the effective cavity length of RCE-PDs can be varied so the resonant wavelength can be selected post growth. Accordingly, we can fabricate an array of PDs on a single chip, on which every PD aims for a specific wavelength.

© 2012 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(230.1950) Optical devices : Diffraction gratings

ToC Category:

Original Manuscript: December 9, 2011
Revised Manuscript: January 17, 2012
Manuscript Accepted: January 18, 2012
Published: January 30, 2012

Kuo-Wei Lai, Yi-Shan Lee, Ying-Jhe Fu, and Sheng-Di Lin, "Selecting detection wavelength of resonant cavity-enhanced photodetectors by guided-mode resonance reflectors," Opt. Express 20, 3572-3579 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) Photodetector,” IEEE J. Quantum Electron.27(8), 2025–2034 (1991). [CrossRef]
  2. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys.78(2), 607–639 (1995). [CrossRef]
  3. J. P. Kim and A. M. Sarangan, “Simulation of resonant cavity enhanced (RCE) photodetectors using the finite difference time domain (FDTD) method,” Opt. Express12(20), 4829–4834 (2004). [CrossRef] [PubMed]
  4. S. S. Murtaza, I.-H. Tan, J. E. Bowers, E. L. Hu, K. A. Anselm, M. R. Islam, R. V. Chelakara, R. D. Dupuis, B. G. Streetman, and J. C. Campbell, “High-finesse resonant-cavity photodetectors with an adjustable resonance frequency,” J. Lightwave Technol.14(6), 1081–1089 (1996). [CrossRef]
  5. E. Özbay, I. Kimukin, N. Biyikli, O. Aytur, M. Gokkavas, G. Ulu, M. S. Unlu, R. P. Mirin, K. A. Bertness, and D. H. Christensen, “High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range,” Appl. Phys. Lett.74(8), 1072–1074 (1999). [CrossRef]
  6. K. Lai and J. C. Campbell, “Design of a tunable GaAs/AlGaAs multiple-quantum-well resonant-cavity photodetector,” IEEE J. Quantum Electron.30(1), 108–114 (1994). [CrossRef]
  7. Y. Shi, J. H. Zhao, J. Sarathy, H. Lee, and G. H. Olsen, “Tunable photodetectors based on strain compensated GaInAsSb/AlGaAsSb multiple quantum wells grown by molecular beam epitaxy,” IEEE Trans. Electron. Dev.44(12), 2167–2173 (1997). [CrossRef]
  8. R. W. Mao, Y. H. Zuo, C. B. Li, B. W. Cheng, X. G. Teng, L. P. Luo, J. Z. Yu, and Q. M. Wang, “Demonstration of low-cost Si-based tunable long-wavelength resonant-cavity-enhanced photodetectors,” Appl. Phys. Lett.86(3), 033502 (2005). [CrossRef]
  9. S. Foland, K. H. Choi, and J. B. Lee, “Pressure-tunable guided-mode resonance sensor for single-wavelength characterization,” Opt. Lett.35(23), 3871–3873 (2010). [CrossRef] [PubMed]
  10. Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express16(18), 14221–14226 (2008). [CrossRef] [PubMed]
  11. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15(5), 1485–1499 (2009). [CrossRef]
  12. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric layer diffraction gratings,” J. Opt. Soc. Am. A7(8), 1470–1474 (1990). [CrossRef]
  13. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infared radiation,” J. Opt. Soc. Am. A14(11), 2985–2993 (1997). [CrossRef]
  14. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004). [CrossRef]
  15. Y. S. Yang, Y. Q. Huang, X. M. Ren, X. A. Ye, X. F. Duan, H. Huang, and Q. Wang, “Design net-grid subwavelength gratings for high quantum efficiency photodetectors,” Adv. Mater. Res.93–94, 43–48 (2010). [CrossRef]
  16. M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency mid-infrared photodetector application,” J. Nanophoton.5(1), 051824 (2011). [CrossRef]
  17. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express18(16), 16973–16988 (2010). [CrossRef] [PubMed]
  18. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt.33(13), 2695–2706 (1994). [CrossRef] [PubMed]
  19. S. Peng and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett.21(8), 549–551 (1996). [CrossRef] [PubMed]
  20. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981). [CrossRef]
  21. M. S. Alam, M. S. Rahman, M. R. Islam, A. G. Bhuiyan, and M. Yamada, “Refractive index, absorption coefficient, and photoelastic constant: key parameters of InGaAs material relevant to InGaAs-based device performance,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07 (IEEE, 2007), pp. 343–346.
  22. K. Kurihara, T. Numai, I. Ogura, A. Yasuda, M. Sugimoto, and K. Kasahara, “Reduction in the series resistance of the distributed Bragg reflector in vertical cavities by using quasigraded superlattices at the heterointerfaces,” J. Appl. Phys.73(1), 21–27 (1993). [CrossRef]
  23. S. C. Huang, T. H. Yang, C. P. Lee, and S. D. Lin, “Electrically driven integrated photonic crystal nanocavity coupled surface emitting laser,” Appl. Phys. Lett.90(15), 151121 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited