OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3586–3612

Suppression of extraneous thermal noise in cavity optomechanics

Yi Zhao, Dalziel J. Wilson, K.-K. Ni, and H. J. Kimble  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 3586-3612 (2012)
http://dx.doi.org/10.1364/OE.20.003586


View Full Text Article

Enhanced HTML    Acrobat PDF (2932 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Extraneous thermal motion can limit displacement sensitivity and radiation pressure effects, such as optical cooling, in a cavity-optomechanical system. Here we present an active noise suppression scheme and its experimental implementation. The main challenge is to selectively sense and suppress extraneous thermal noise without affecting motion of the oscillator. Our solution is to monitor two modes of the optical cavity, each with different sensitivity to the oscillator’s motion but similar sensitivity to the extraneous thermal motion. This information is used to imprint “anti-noise” onto the frequency of the incident laser field. In our system, based on a nano-mechanical membrane coupled to a Fabry-Pérot cavity, simulation and experiment demonstrate that extraneous thermal noise can be selectively suppressed and that the associated limit on optical cooling can be reduced.

© 2012 OSA

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.3320) Lasers and laser optics : Laser cooling
(140.4780) Lasers and laser optics : Optical resonators
(200.4880) Optics in computing : Optomechanics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optomechanics

History
Original Manuscript: December 15, 2011
Revised Manuscript: January 20, 2012
Manuscript Accepted: January 20, 2012
Published: January 30, 2012

Citation
Yi Zhao, Dalziel J. Wilson, K.-K. Ni, and H. J. Kimble, "Suppression of extraneous thermal noise in cavity optomechanics," Opt. Express 20, 3586-3612 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3586


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. B. Braginsky, A. B. Manukin, and M. Y. Tikhonov, “Investigation of dissipative ponderomotive effects of electromagnetic radiation,” Sov. Phys. JETP31, 829 (1970).
  2. T. J. Kippenberg and K. J. Vahala, “Cavity Opto-Mechanics,” Opt. Express15, 17172–17205 (2007). [CrossRef] [PubMed]
  3. F. Marquardt, “Optomechanics,” Physics2, 40 (2009). [CrossRef]
  4. A. Cleland, “Optomechanics: Photons refrigerating phonons,” Nat. Phys.5, 458–460 (2009). [CrossRef]
  5. M. Aspelmeyer, S. Gröblacher, K. Hammerer, and N. Kiesel, “Quantum optomechanics – throwing a glance,” J. Opt. Soc. Am. B27, A189–A197 (2010). [CrossRef]
  6. S. Gröblacher, J. Hertzberg, M. Vanner, G. Cole, S. Gigan, K. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys.5, 485–488 (2009). [CrossRef]
  7. O. Arcizet, R. Rivière, A. Schliesser, G. Anetsberger, and T. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A80, 021803 (2009). [CrossRef]
  8. A. O’Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature464, 697–703 (2010). [CrossRef]
  9. M. Eichenfield, J. Chan, A. Safavi-Naeini, K. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express17, 020078 (2009). [CrossRef]
  10. G. Cole, I. Wilson-Rae, K. Werbach, M. Vanner, and M. Aspelmeyer, “Phonon-tunneling dissipation in mechanical resonators,” Nat. Commun.2, 231 (2011). [CrossRef] [PubMed]
  11. B. Zwickl, W. Shanks, A. Jayich, C. Yang, B. Jayich, J. Thompson, and J. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92, 103125–103125 (2008). [CrossRef]
  12. G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics2, 627–633 (2008). [CrossRef]
  13. R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A83, 063835 (2011). [CrossRef]
  14. D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett.103, 207204 (2009). [CrossRef]
  15. J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. Whittaker, K. Lehnert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359 (2011). [CrossRef] [PubMed]
  16. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89 (2011). [CrossRef] [PubMed]
  17. Prof. Jack Harris, private discussions.
  18. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett.99, 093901 (2007). [CrossRef] [PubMed]
  19. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A77, 033804 (2008). [CrossRef]
  20. F. Marquardt, J. Chen, A. Clerk, and S. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett.99, 93902 (2007). [CrossRef]
  21. T. Carmon, T. Kippenberg, L. Yang, H. Rokhsari, S. Spillane, and K. Vahala, “Feedback control of ultra-high-q microcavities: application to micro-raman lasers and microparametric oscillators,” Opt. Express13, 3558–3566 (2005). [CrossRef] [PubMed]
  22. P. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D42, 2437 (1990). [CrossRef]
  23. L. Diósi, “Laser linewidth hazard in optomechanical cooling,” Phys. Rev. A78, 021801 (2008). [CrossRef]
  24. G. Phelps and P. Meystre, “Laser phase noise effects on the dynamics of optomechanical resonators,” Phys. Rev. A83, 063838 (2011). [CrossRef]
  25. P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer, “Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems,” Phys. Rev. A80, 063819 (2009). [CrossRef]
  26. A. Gillespie and F. Raab, “Thermally excited vibrations of the mirrors of laser interferometer gravitational-wave detectors,” Phys. Rev. D52, 577–585 (1995). [CrossRef]
  27. G. Harry, H. Armandula, E. Black, D. Crooks, G. Cagnoli, J. Hough, P. Murray, S. Reid, S. Rowan, P. Sneddon, M. M. Fejer, R. Route, and S. D. Penn, “Thermal noise from optical coatings in gravitational wave detectors,” Appl. Opt.45, 1569–1574 (2006). [CrossRef] [PubMed]
  28. H. J. Butt and M. Jaschke, “Calculation of thermal noise in atomic force microscopy,” Nanotechnology6, 1 (1995). [CrossRef]
  29. K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett.93, 250602 (2004). [CrossRef]
  30. A. Cleland and M. Roukes, “Noise processes in nanomechanical resonators,” J. Appl. Phys.92, 2758–2769 (2002). [CrossRef]
  31. T. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron Dev.40, 903–909 (1993). [CrossRef]
  32. V. Braginsky, V. Mitrofanov, V. Panov, K. Thorne, and C. Eller, Systems with Small Dissipation (Univ. of Chicago Press, 1986).
  33. S. Penn, A. Ageev, D. Busby, G. Harry, A. Gretarsson, K. Numata, and P. Willems, “Frequency and surface dependence of the mechanical loss in fused silica,” Phys. Lett. A352, 3–6 (2006). [CrossRef]
  34. D. Santamore and Y. Levin, “Eliminating thermal violin spikes from ligo noise,” Phys. Rev. D64, 042002 (2001). [CrossRef]
  35. P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett.83, 3174–3177 (1999). [CrossRef]
  36. M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, “Feedback cooling of a cantilevere’s fundamental mode below 5 mK,” Phys. Rev. Lett.99, 017201 (2007). [CrossRef] [PubMed]
  37. B. Sheard, M. Gray, B. Slagmolen, J. Chow, and D. McClelland, “Experimental demonstration of in-loop intra-cavity intensity-noise suppression,” IEEE J. Quantum Electron.41, 434–440 (2005). [CrossRef]
  38. C. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature432, 1002–1005 (2004). [CrossRef] [PubMed]
  39. V. Braginsky and S. Vyatchanin, “Low quantum noise tranquilizer for fabry-perot interferometer,” Phys. Lett. A293, 228–234 (2002). [CrossRef]
  40. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452, 72–75 (2008). [CrossRef] [PubMed]
  41. A. Jayich, J. Sankey, B. Zwickl, C. Yang, J. Thompson, S. Girvin, A. Clerk, F. Marquardt, and J. Harris, “Dispersive optomechanics: a membrane inside a cavity,” N. J. Phys.10, 095008 (2008). [CrossRef]
  42. Prof. Jun Ye and Prof. Peter Zoller, private discussions.
  43. J. Sankey, C. Yang, B. Zwickl, A. Jayich, and J. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys.6, 707 (2010). [CrossRef]
  44. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983). [CrossRef]
  45. E. Black, “An introduction to pounddreverhall laser frequency stabilization,” Am. J. Phys69, 79 (2001). [CrossRef]
  46. For a generic time-dependent variable ζ(t), the Fourier transform is defined as ζ(f)≡∫−∞∞ζ(t)e−2πiftdt, and the one-sided power spectral density at Fourier frequency f is Sζ(f)≡2∫−∞∞〈ζ(t)ζ(t+τ)〉e2iπftdτ with unit [ζ]2/Hz. The normalization convention is that 〈ζ2(t)〉=∫0∞Sζ(f)df.
  47. Provided by Prof. Jun Ye’s group.
  48. M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D7, 107–116 (1999).
  49. H. B. Callen and T. A. Welton, “Irreversibility and generalized noise,” Phys. Rev.83, 34–40 (1951). [CrossRef]
  50. www.comsol.com .
  51. D. F. Wall and G. J. Milburn, Quantum Optics (Springer, 1995), chap. 7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited